मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : If f(x) = a + bx + cx2, show that ∫01f(x)⋅dx=(16[f(0)+4f(12)+f(1)] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`

बेरीज

उत्तर

`int_0^1 f(x)*dx = int_0^1 (a + bx + cx^2)*dx`

= `a int_0^1 1*dx + b int_0^1 x*dx + c int_0^1 x^2*dx`

= `[ax + "bx"^2/2 + "cx"^3/3]_0^1`

= `a + b/2 + c/3`                                 ...(1)

Now, `f(0) = a + b(0) + c(0)^2` = a

`f(1/2) = a + b(1/2) + c(1/2)^2 = a + b/2 + c/4`
and 
`f(1) = a + b(1) + c(1)^2` = a + b + c

∴ `(1)/(6)[f(0) + 4f(1/2) + f(1)]`

= `(1)/(6)[a + 4(a + b/2 + c/4) + (a + b + c)]`

= `(1)/(6)[a + 4a + 2b + c + a + b + c]`

= `(1)/(6)[6a + 3b + 2c]`

= `a + b/2 + c/3`                               ...(2)
∴ from (1) and (2),

`int_0^1 f(x)*dx = (1)/(6)[f(0) + 4f(1/2) + f(1)]`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Definite Integration
Miscellaneous Exercise 4 | Q 4.3 | पृष्ठ १७७

संबंधित प्रश्‍न

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Choose the correct alternative :

`int_0^2 e^x*dx` =


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following : `int_(-4)^(-1) (1)/x*dx`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate `int_1^3 log x  "d"x`


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×