Advertisements
Advertisements
प्रश्न
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
उत्तर
Let I = `int_2^3 x/((x + 2)(x + 3))*dx`
Let `x/((x + 2)x + 3) = "A"/(x + 2) + "B"/(x + 3)` ...(i)
∴ x = A(x + 3) + B(x + 2) ...(ii)
Putting x = – 3 in (ii) we get
– 2 = A
∴ B = 3
Putting x = – 2 in (ii),we get
– 2 = A
∴ A = – 2
From (i), we get
`x/((x + 2(x + 3))) = (-2)/(x + 2) + (3)/(x + 3)`
∴ I = `int_2^3 [(-2)/(x + 2) + 3/(x + 3)]*dx`
= `-2int_2^3 (1)/(x + 2)*dx + 3 int_2^3 (1)/(x + 3)*dx`
= `-2[log|x + 2|]_2^3 + 3[log|x + 3|]_2^3`
= `-2log[log 5 – log 4] + 3[log 6 – log 5]`
= `-2[log(5/4)] + 3[log(6/5)]`
= `3log(6/5) - 2log(5/4)`
= `log(6/5)^2 - 2log(5/4)^2`
= `log(216/125) - log(25/16)`
= `log(216/125 xx 16/25)`
∴ I = `log(3456/3125)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
`int_1^2 x^2 "d"x` = ______
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_1^3 log x dx`
Solve the following.
`int_1^3x^2logx dx`
Solve the following.
`int_1^3x^2 logx dx`