Advertisements
Advertisements
प्रश्न
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
पर्याय
7
49
0
`(7)/(2)`
उत्तर
Let f(x) = `x^3/(x^2 + 7)`
∴ f(– x) = `(-x)^3/((-x)^2 + 7)`
= `x^3/(x^2 + 7)`
= – f(x)
∴ f(x) is an odd function.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`