Advertisements
Advertisements
प्रश्न
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
विकल्प
7
49
0
`(7)/(2)`
उत्तर
Let f(x) = `x^3/(x^2 + 7)`
∴ f(– x) = `(-x)^3/((-x)^2 + 7)`
= `x^3/(x^2 + 7)`
= – f(x)
∴ f(x) is an odd function.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
`int_1^2 x^2 "d"x` = ______
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Solve the following `int_1^3 x^2log x dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`