Advertisements
Advertisements
प्रश्न
Choose the correct alternative :
`int_2^3 x^4*dx` =
पर्याय
`(1)/(2)`
`(5)/(2)`
`(5)/(211)`
`(211)/(5)`
उत्तर
`int_2^3 x^4*dx` = `[x^5/5]_2^1`
= `(1)/(5)(3^5 - 2^5)`
= `(1)/(5)(243 - 32)`
= `(211)/(5)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
`int_0^1 1/(2x + 5)dx` = ______
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`