Advertisements
Advertisements
प्रश्न
Fill in the blank : `int_2^3 x^4*dx` = _______
उत्तर
`int_2^3 x^4*dx` = `[x^5/5]_2^1`
= `(1)/(5)(3^5 - 2^5)`
= `(1)/(5)(243 - 32)`
= `(211)/(5)`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 log x dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Solve the following.
`int_1^3x^2 logx dx`