Advertisements
Advertisements
प्रश्न
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
उत्तर
Let I = `int_0^1 dx/(2x + 5)`
Put 2x + 5 = t
∴ 2dx = dt
∴ dx = `"dt"/(2)`
When x = 0, t = 2(0) + 5 = 5
When x = 1, t = 2(1) + 5 = 7
∴ I = `(1)/(2) int_5^7 "dt"/"t"`
= `(1)/(2)[log|"t"|]_5^7`
= `(1)/(2)(log 7 - log 5)`
= `(1)/(2)log(7/5)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Fill in the blank : `int_0^2 e^x*dx` = ________
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite intergral:
`int _1^3logxdx`
Solve the following:
`int_1^3 x^2 log x dx`