Advertisements
Advertisements
प्रश्न
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
पर्याय
True
False
उत्तर
False
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
`int_1^2 x^2 "d"x` = ______
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`