Advertisements
Advertisements
Question
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Solution
Let I = `int_0^1 dx/(2x + 5)`
Put 2x + 5 = t
∴ 2dx = dt
∴ dx = `"dt"/(2)`
When x = 0, t = 2(0) + 5 = 5
When x = 1, t = 2(1) + 5 = 7
∴ I = `(1)/(2) int_5^7 "dt"/"t"`
= `(1)/(2)[log|"t"|]_5^7`
= `(1)/(2)(log 7 - log 5)`
= `(1)/(2)log(7/5)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
`int_1^2 x^2 "d"x` = ______
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`