Advertisements
Advertisements
Question
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solution
Let I = `int_4^9 (1)/sqrt(x)*dx`
= `int_4^9x^(1/2)*dx = [(x^(1/2))/(1/2)]_4^9`
= `2[sqrt(x)]_4^9`
= `2(sqrt(9) - sqrt(4))`
= 2 (3 – 2)
∴ I = 2.
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Solve the following.
`int_1^3 x^2 logxdx`