English

Evaluate : ∫-π4π411-sinx⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`

Evaluate

Solution

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`

= `int_(-pi/4)^(pi/4) (1)/(1 - sinx)*(1 + sinx)/(1 + sinx)*dx`

= `int_(-pi/4)^(pi/4)(1 + sinx)/(1 - sin^2x)*dx`

= `int_(-pi/4)^(pi/4)(1 + sinx)/(cos^2x)*dx`

= `int_(-pi/4)^(pi/4) 1/(cos^2x) dx + int_(-pi/4)^(pi/4) (sinx)/(cos^2x)*dx`

= `int_(-pi/4)^(pi/4)sec^2x  dx + int_(-pi/4)^(pi/4) 1/cosx*sinx/cosxdx`

= `[tanx]_(-pi/4)^(pi/4) + int_(-pi/4)^(pi/4) secx tanx*dx`

= `[tan  pi/4 - tan  (-pi/4)] + [secx]_(-pi/4)^(pi/4)`

= `[1 + 1] + [sec  pi/4 - sec  ((-pi)/4)]`

= `2 + [sqrt2 - sqrt2]`

= 2 + 0

I = 2

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 171]

RELATED QUESTIONS

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Choose the correct alternative :

`int_0^2 e^x*dx` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Fill in the blank : `int_0^2 e^x*dx` = ________


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


Evaluate `int_1^3 log x  "d"x`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Solve the following.

`int_1^3 x^2 log x  dx`


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


Evaluate the following definite intergral:

`int_1^3logxdx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/ ((9x^2 -1)) dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2) dx` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×