Advertisements
Advertisements
Question
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Solution
Let I = `int_0^(pi/2) (2 log sinx - log sin 2x)*dx`
= `int_0^(pi/2) [2log sinx - log (2sinx cosx)]*dx`
= `int_0^(pi/2) [2log sinx - (log 2 + log sinx + log cosx)]*dx`
= `int_0^(pi/2) (2 log sinx - log 2 - log sinx - log cos x)*dx`
= `int_0^(pi/2) (log sinx - log cosx - log 2)*dx`
= `int_0^(pi/2) log sinx*dx - int_0^(pi/2) log cosx*dx - log2 int_0^(pi/2) 1*dx`
= `int_0^(pi/2) log [sin(pi/2 - x)]*dx - int_0^(pi/2) logcosx*dx - log2[x]_0^(pi/2) ...[because int_0^a f(x)*dx = iint_0^a f(a - x)*dx]`
= `int_0^(pi/2) logcosx*dx - int_0^(pi/2) logcosx*dx - log2[pi/2 - 0]`
= `- pi/(2) log 2`.
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite integral:
`int_1^3 logx dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`