Advertisements
Advertisements
Question
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Solution
Let I = `int_0^1 t^5 sqrt(1 - t^2)*dt`
Put t = sin θ
∴ dt = cos θ dθ
When t = 1, θ = sin–11 = `pi/(2)`
When t = 0, θ = sin–10 = 0
∴ I = `int_0^(pi/2) sin^5 theta sqrt(1 - sin^2 theta)cos theta*d theta`
I = `int_0^(pi/2) sin^5 theta*cos theta* cos theta*d theta`
= `int_0^(pi/2) sin^5 theta(1 - sin^2 theta)*d theta`
= `int_0^(pi/2) (sin^5 theta - sin^7 theta)*d theta`
= `int_0^(pi/2) sin^5 theta*d theta - int_0^(pi/2) sin^7 thetad theta`.
Using Reduction formula, we get
I = `4/5*2/3 - 6/7*4/5*2/3`
= `(8)/(15)[1 - 6/7]`
= `(8)/(15) xx (1)/(7)`
= `(8)/(105)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_0^2 e^x*dx` = ________
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_1^2 x^2*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
`int_1^2 x^2 "d"x` = ______
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`