Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
उत्तर
Let I = `int_0^1 t^5 sqrt(1 - t^2)*dt`
Put t = sin θ
∴ dt = cos θ dθ
When t = 1, θ = sin–11 = `pi/(2)`
When t = 0, θ = sin–10 = 0
∴ I = `int_0^(pi/2) sin^5 theta sqrt(1 - sin^2 theta)cos theta*d theta`
I = `int_0^(pi/2) sin^5 theta*cos theta* cos theta*d theta`
= `int_0^(pi/2) sin^5 theta(1 - sin^2 theta)*d theta`
= `int_0^(pi/2) (sin^5 theta - sin^7 theta)*d theta`
= `int_0^(pi/2) sin^5 theta*d theta - int_0^(pi/2) sin^7 thetad theta`.
Using Reduction formula, we get
I = `4/5*2/3 - 6/7*4/5*2/3`
= `(8)/(15)[1 - 6/7]`
= `(8)/(15) xx (1)/(7)`
= `(8)/(105)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
`int_1^2 x^2 "d"x` = ______
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
`int_0^1 1/(2x + 5)dx` = ______
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`