मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫01(cos-1x2)⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`

बेरीज

उत्तर

Let I = `int_0^1 (cos^-1 x^2)*dx`

Put cos–1x = t
∴ x = cos t
∴ dx = – sin t ·dt

When x = 0, t = cos–10 = `pi/(2)`

When x = 1, t = cos–11 = 0

∴ I = `int_(pi/2)^0 t^2*(- sin t)*dt`

= ` -int_(pi/2)^0 t^2sin t *dt`

= `int_0^(pi/2) t^2 sint*dt         ...[because int_a^b f(x)*dx = -int_b^a f(x)*dx]`

= `[t^2 int sint*dt]_0^(pi/2) - int_0^(pi/2)[d/dx(t^2) int sint*dt]*dt`

= `[t^2 ( cos t)]_0^(pi/2) - int_0^(pi/2) 2t*(- cos t)*dt`

= `[- t^2cos t]_0^(pi/2) + 2int_0^(pi/2) t*cos t*dt`

= `[ - pi/4 cos  pi/2 + 0] + 2{[t int cos t*dt]_0^(pi/2) - int_0^(pi/2)[d/dt (t) int cos t*dt]*dt}`

= `0 + 2{[t sin t]_0^(pi/2) - int_0^(pi/2) 1*sin t*dt}  ...[because cos  pi/2 = 0]`

= `2[t sin t]_0^(pi/2) - 2[(- cos t)]_0^(pi/2)`

= `2[pi/2 sin  pi/2 - 0] - 2[- cos   pi/2 + cos 0]`

= `2[pi/2 xx 1] - 2[- 0 + 1]`

= π – 2.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.06 | पृष्ठ १७६

संबंधित प्रश्‍न

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`


Solve the following : `int_4^9 (1)/sqrt(x)*dx`


Solve the following : `int_2^3 x/(x^2 + 1)*dx`


Solve the following : `int_(-4)^(-1) (1)/x*dx`


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


Evaluate `int_1^3 log x  "d"x`


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Solve the following.

`int_0^1 e^(x^2) x^3 dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×