मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Evaluate the following integrals: ∫13x+53x+53+9-x3⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`

बेरीज

उत्तर

Let I = `int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`       ...(i)

= `int_1^3 (root(3)((1 + 3 - x) + 5))/(root(3)((1 + 3 - x) + 5) + root(3)(9 - (1 + 3 - x)))*dx           ...[because  int_"a"^"b" f(x)*dx = int_"a"^"b" f("a" + "b" - x)*dx]`

∴ I = `int_1^3 (root(3)(9 - x))/(root(3)(9 - x) + root(3)(5 + x))*dx`         ...(ii)

Adding (i) and (ii), we get

2I = `int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx + int_1^3 (root(3)(9 - x))/(root(3)(9 - x) + root(3)(5 + x))*dx`

= `int_1^3 (root(3)(x + 5) + root(3)(9 - x))/(root(3)(x + 5) - root(3)(9 - x))*dx`

= `int_1^3 1*dx`

= `[x]_1^3`

∴ 2I = 3 – 1 = 2

∴ I = 1

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.6: Definite Integration - Q.4

संबंधित प्रश्‍न

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Choose the correct alternative :

`int_2^3 x^4*dx` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Fill in the blank : `int_0^2 e^x*dx` = ________


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


Solve the following : `int_1^2 x^2*dx`


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following.

`int_0^1 e^(x^2) x^3 dx`


Evaluate:

`int_0^1 |x| dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Solve the following.

`int_1^3 x^2 log x  dx`


The principle solutions of the equation cos θ = `1/2` are ______.


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×