मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Show that: ∫0π4log(1+tanx)dx=π8log2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

 Show that: 0π4log(1+tanx)dx=π8log2

बेरीज

उत्तर

Let I = 0π4log(1+tanx)dx

= 0π4log{1+tan(π4-x)}dx   ......( 0af(x)dx= f(a -x)dx)

= 0π4log{1+(tanπ4-tanx)1+tanπ4tanx}dx

= 0π4{1+1-tanx1+tanx}dx

 = 0π4log{1+tanx+1-tanx1+tanx}dx

= 0π4log(21+tanx)dx

= 0π4{log2-log(1+tanx)}dx

= 0π4log 2 dx -0π4log(1+tanx)dx

I = log2[x]0π4-I

2I = log2[π4-0]

I = π8.log2

0π4log(1+tanx)dx=π8log2

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (March) Set 1

संबंधित प्रश्‍न

Prove that:

1a2-x2dx=12alog(a+xa-x)+c


Evaluate : 231x2+5x+6dx


Evaluate : 3512x+3-2x-3dx


Evaluate : 0414x-x2dx


Evaluate : 01xtan-1xdx


Evaluate : 012sin-1x(1-x2)32dx


Evaluate : 0π/4sin2xsin4x+cos4xdx


Evaluate : 0π4cosx4-sin2xdx


Evaluate the following : 03x2(3-x)52dx


Evaluate the following : -π4π4x3sin4xdx


23dxx(x3-1) = ______.


Choose the correct option from the given alternatives :

Let I1 = ee2dxlogx and I2=12exxdx, then


Choose the correct option from the given alternatives :

The value of -π4π4log(2+sinθ2-sinθ)dθ is


Evaluate the following : 01(11+x2)sin-1(2x1+x2)dx


Evaluate the following : π53π10sinxsinx+cosxdx


Evaluate the following : 01sin-1(2x1+x2)dx


Evaluate the following : if aaxdx=2a0π2sin3xdx, find the value of aa+1xdx


Evaluate the following definite integrals: 0111+x+xdx


Evaluate the following integrals : -99x34-x2.dx


Choose the correct alternative :

-99x34-x2dx =


Choose the correct alternative : 

49dxx =


Choose the correct alternative :

23x4dx =


Choose the correct alternative :

02exdx =


Choose the correct alternative :

27xx+9-xdx =


Fill in the blank : 23x4dx = _______


State whether the following is True or False : 47(11-x)2(11-x)2+x2dx=32


Solve the following : 12x+3x(x+2)dx


Solve the following : -4-11xdx


Solve the following : 0112x-3dx


Solve the following : 125x2x2+4x+3dx


Choose the correct alternative:

23xx2-1 dx =


State whether the following statement is True or False:

0112x+5 dx=log(75)


State whether the following statement is True or False:

abf(x) dx=abf(a+b-x) dx


Evaluate 0111+x+x dx


Evaluate 123x(9x2-1) dx


Evaluate 13logx dx


Evaluate the following definite intergral:

491xdx


0112x+5dx = ______


0414x-x2dx = ______.


abf(x)dx=abf(t)dt


Evaluate the following definite integral:

491xdx


Evaluate the following definite intergral:

-231x+5dx


Solve the following.

01ex2x3 dx


Evaluate the following integral. 

-99x34-x2 dx


Evaluate the following definite intergral:

491xdx


Evaluate the following definite intergral.

123x(9x2-1)dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.