Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
उत्तर
Let I = `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Put x = tan t, i.e. t = tan–1x
∴ dx = sec2t·dt
When x = 0, t = tan–1 0 = 0
When x = 1, t = tan–1 = `pi/(4)`
∴ I = `int_0^(pi/4) sin^-1 ((2tant)/(1 + tan^2t))sec^2t*dt`
= `int_0^(pi/4) sin^-1 (sin2t) sec^2t*dt`
= `int_0^(pi/4) 2t sec^2t*dt`
= `[2t int sec^2t*dt]_0^(pi/4) - int_0^(pi/4) [d/dx (2t) int sec^2t*dt]`
= `[2t tan t]_0^(pi/4) - int_0^(pi/4) 2 tan t *dt`
= `[2* pi/4 tan pi/4 - 0] - 2log(sec t)]_0^(pi/4)`
= `pi/2 - 2[log(sec pi/4) - log (sec0)]`
= `pi/2 - 2[log sqrt(2) - log 1]`
= `pi/2 - 2[1/2 log 2 - 0]`
= `pi/(2) - log 2`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Solve the following.
`int_1^3x^2logx dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`