मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫01sin-1(2x1+x2)⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`

बेरीज

उत्तर

Let I = `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`

Put x = tan t, i.e. t = tan–1x
∴ dx = sec2t·dt
When x = 0, t = tan–1 0 = 0

When x = 1, t = tan–1 = `pi/(4)`

∴ I = `int_0^(pi/4) sin^-1 ((2tant)/(1 + tan^2t))sec^2t*dt`

= `int_0^(pi/4) sin^-1 (sin2t) sec^2t*dt`

= `int_0^(pi/4) 2t sec^2t*dt`

= `[2t int sec^2t*dt]_0^(pi/4) - int_0^(pi/4) [d/dx (2t) int sec^2t*dt]`

= `[2t tan t]_0^(pi/4) - int_0^(pi/4) 2 tan t *dt`

= `[2* pi/4 tan  pi/4 - 0] - 2log(sec t)]_0^(pi/4)`

= `pi/2 - 2[log(sec  pi/4) - log (sec0)]`

= `pi/2 - 2[log sqrt(2) - log 1]`

= `pi/2 - 2[1/2 log 2 - 0]`

= `pi/(2) - log 2`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.05 | पृष्ठ १७६

संबंधित प्रश्‍न

Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


State whether the following statement is True or False:

`int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtxdx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Solve the following.

`int_1^3x^2logx  dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Solve the following.

`int_1^3x^2 logx  dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×