English

Evaluate the following : ∫01sin-1(2x1+x2)⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`

Sum

Solution

Let I = `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`

Put x = tan t, i.e. t = tan–1x
∴ dx = sec2t·dt
When x = 0, t = tan–1 0 = 0

When x = 1, t = tan–1 = `pi/(4)`

∴ I = `int_0^(pi/4) sin^-1 ((2tant)/(1 + tan^2t))sec^2t*dt`

= `int_0^(pi/4) sin^-1 (sin2t) sec^2t*dt`

= `int_0^(pi/4) 2t sec^2t*dt`

= `[2t int sec^2t*dt]_0^(pi/4) - int_0^(pi/4) [d/dx (2t) int sec^2t*dt]`

= `[2t tan t]_0^(pi/4) - int_0^(pi/4) 2 tan t *dt`

= `[2* pi/4 tan  pi/4 - 0] - 2log(sec t)]_0^(pi/4)`

= `pi/2 - 2[log(sec  pi/4) - log (sec0)]`

= `pi/2 - 2[log sqrt(2) - log 1]`

= `pi/2 - 2[1/2 log 2 - 0]`

= `pi/(2) - log 2`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 176]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.05 | Page 176

RELATED QUESTIONS

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Choose the correct alternative :

`int_2^3 x^4*dx` =


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


`int_1^2 x^2  "d"x` = ______


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


State whether the following statement is True or False:

`int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x))  "d"x`


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate:

`int_0^1 |x| dx`


`int_a^b f(x) dx = int_a^b f (t) dt`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Evaluate the following definite intergral:

`int_1^2 (3x)/ ((9x^2 -1)) dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5) · dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×