Advertisements
Advertisements
Question
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Solution
Let I = `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Put x = tan t, i.e. t = tan–1x
∴ dx = sec2t·dt
When x = 0, t = tan–1 0 = 0
When x = 1, t = tan–1 = `pi/(4)`
∴ I = `int_0^(pi/4) sin^-1 ((2tant)/(1 + tan^2t))sec^2t*dt`
= `int_0^(pi/4) sin^-1 (sin2t) sec^2t*dt`
= `int_0^(pi/4) 2t sec^2t*dt`
= `[2t int sec^2t*dt]_0^(pi/4) - int_0^(pi/4) [d/dx (2t) int sec^2t*dt]`
= `[2t tan t]_0^(pi/4) - int_0^(pi/4) 2 tan t *dt`
= `[2* pi/4 tan pi/4 - 0] - 2log(sec t)]_0^(pi/4)`
= `pi/2 - 2[log(sec pi/4) - log (sec0)]`
= `pi/2 - 2[log sqrt(2) - log 1]`
= `pi/2 - 2[1/2 log 2 - 0]`
= `pi/(2) - log 2`.
APPEARS IN
RELATED QUESTIONS
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
`int_1^2 x^2 "d"x` = ______
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate:
`int_0^1 |x| dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`