Advertisements
Advertisements
Question
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Solution
L.H.S becomes
`int_(-a)^a f(x) dx = int_(-a)^0 f(x) dx + int_0^a f(x) dx` .......(i)
Consider `int_(-a)^0 f(x) dx`
Put x = – t
∴ dx = – dt
When x = – a, t = a
and when x = 0, t = 0
∴ `int_(-a)^0 f(x) dx = int_a^0 f(-t)(-dt)`
= `-int_a^0 f(-t) dt`
= `int_0^a f(-t) dt` ......`[∵ int_a^b f(x) dx = - int_b^a f(x) dx]`
= `int_0^a f(-x) dx` ......`[∵ int_a^b f(x) dx = int_a^b f(t) dt]`
Equation (i) becomes
`int_(-a)^a f(x) dx = int_0^a f(-x) dx + int_0^a f(x) dx`
= `int_0^a [f(-x) + f(x)] dx` ......(ii)
Case I:
If f(x) is an even function, then f(– x) = f(x),
Equation (ii) becomes
`int_(-a)^a f(x) dx = 2* int_0^a f(x) dx`
Case II:
If f(x) is an odd function, then f(– x) = – f(x),
Equation (ii) becomes
`int_(-a)^a f(x) dx` = 0
`{:(int_(-a)^a f(x) dx = 2* int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
`int_1^2 x^2 "d"x` = ______
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`