Advertisements
Advertisements
Question
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Solution
Let I = `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Put 1 + log x = t
∴ `1/x "d"x` = dt
When x = 1, t = 1 + log 1 = 1 + 0 = 1
When x = e, t = 1 + log e = 1 + 1 = 2
∴ I = `int_1^2 "dt"/"t"^2`
= `int_1^2 "t"^(-2) "dt"`
= `[("t"^(-1))/(-1)]_1^2`
= `-[1/"t"]_1^2`
= `-(1/2 - 1)`
∴ I = `-((-1)/2)`
= `1/2`
APPEARS IN
RELATED QUESTIONS
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`