Advertisements
Advertisements
Question
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Solution
Let I = `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
= `int_1^2 "e"^(2x)*1/x "d"x - int_1^2 "e"^(2x)*1/(2x^2) "d"x`
= `[1/x int"e"^(2x) "d"x]_1^2 - int_1^2["d"/("d"x)(1/x)"f""e"^(2x) "d"x]"d"x - 1/2 int_1^2"e"^(2x)* 1/x^2 "d"x`
= `[1/x * ("e"^(2x))/2]_1^2 - int_1^2(-1/x^2)* ("e"^(2x))/2 "d"x - 1/2 int_1^2 "e"^(2x) * 1/x^2 "d"x`
= `(1/4 "e"^4 - "e"^2/2) + 1/2 int_1^2 "e"^(2x) * 1/x^2 "d"x - 1/2 int_1^2 "e"^(2x) * 1/x^2 "d"x`
∴ I = `"e"^4/4 - "e"^2/2`
APPEARS IN
RELATED QUESTIONS
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Solve the following : `int_1^2 x^2*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
Solve the following.
`int_1^3 x^2 logx dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Solve the following.
`int_1^3x^2 logx dx`