Advertisements
Advertisements
Question
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Solution
Let I = `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Put sin–1 x = t
∴ `(1)/sqrt(1 - x^2)*dx` = dt
When x = 1, t = `sin^-1 1 = pi/(2)`
When x = `1/sqrt(2), t = sin^-1 1/sqrt(2) = pi/(4)`
Also, `cos^-1 x = pi/2 - sin^-1x = pi/(2) - t`
∴ I = `int_(i/4)^(pi/2) e^(pi/2 - t)*t dt`
= `e^(pi/2) int_(i/4)^(pi/2) te^-t dt`
= `e^(pi/2) {[t int e^-t dt]_(pi/4)^(pi/2) - int_(i/4)^(pi/2)[d/dt (t) int e^-t dt]*dt}`
= `e^(pi/2){[ - te^-t]_(pi/4)^(pi/2) - int_(i/4)^(pi/2) (1)( - e^-t)*dt}`
= `e^(pi/2) {(-pi)/(2) e^(-pi/2) + pi/(4) e^(-pi/4) + int_(i/4)^(pi/2) e^-t *dt}`
= `- pi/(2) e^o + pi/(4) e^(pi/2 - pi/4) + e^(pi/2)[- e^-t]^(pi/2)`
= `- pi/(2) + pi/(4) e^(pi/4) + e^(pi/2)[ - e^(-pi/2) + e^((-pi)/4)]`
= `- pi/(2) + e^(pi/4) pi/(4) - e^o + ^(pi/2 - pi/4)`
= `- pi/(2) + e^(pi/4) pi/(4) - 1 + e^(pi/4)`
= `e^(pi/4) (pi/4 + 1) - (pi/2 + 1)`.
APPEARS IN
RELATED QUESTIONS
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`