English

Evaluate : ∫121ecos-1xsin-1x1-x2⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`

Sum

Solution

Let I = `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`

Put sin–1 x = t

∴ `(1)/sqrt(1 - x^2)*dx` = dt

When x = 1, t = `sin^-1 1 = pi/(2)`

When x = `1/sqrt(2), t = sin^-1 1/sqrt(2) = pi/(4)`

Also, `cos^-1 x = pi/2 - sin^-1x = pi/(2) - t`

∴ I = `int_(i/4)^(pi/2) e^(pi/2 - t)*t  dt`

= `e^(pi/2) int_(i/4)^(pi/2) te^-t dt`

= `e^(pi/2) {[t int e^-t dt]_(pi/4)^(pi/2) - int_(i/4)^(pi/2)[d/dt (t) int e^-t dt]*dt}`

= `e^(pi/2){[ - te^-t]_(pi/4)^(pi/2)  - int_(i/4)^(pi/2) (1)( - e^-t)*dt}`

= `e^(pi/2) {(-pi)/(2) e^(-pi/2) + pi/(4) e^(-pi/4) + int_(i/4)^(pi/2) e^-t *dt}`

= `- pi/(2) e^o + pi/(4) e^(pi/2 - pi/4) + e^(pi/2)[- e^-t]^(pi/2)`

= `- pi/(2) + pi/(4) e^(pi/4) + e^(pi/2)[ - e^(-pi/2) + e^((-pi)/4)]`

= `- pi/(2) + e^(pi/4) pi/(4) - e^o + ^(pi/2 - pi/4)`

= `- pi/(2) + e^(pi/4) pi/(4) - 1 + e^(pi/4)`

= `e^(pi/4) (pi/4 + 1) - (pi/2 + 1)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Solve the following.

`int_1^3 x^2 log x  dx`


Solve the following.

`int_1^3 x^2 log x dx `


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Solve the following.

`int_1^3x^2 logx  dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2) dx` 


Evaluate the following definite integral:

`int_1^3 logx.dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×