Advertisements
Advertisements
Question
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Options
True
False
Solution
`int_"a"^"b" f(x)*dx = int_"a"^"b" f("a" + "b" - x)*dx` False.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Evaluate `int_1^3 log x "d"x`
Evaluate the following definite intergral:
`int_1^3 logx dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Solve the following.
`int_1^3 x^2 log x dx`