English

Evaluate the following : ∫-111+x39-x2⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`

Sum

Solution

Let I = `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`

= `int_(-1)^(1)[1/(9 - x^2) + x^3/(9 - x^2)]*dx`

= `int_(-1)^(1) 1/(9 - x^2)*dx + int_(-1)^(1) x^3/(9 - x^2)*dx`

∴ I = I1 + I2                                ....(1)

I1 = `int_(-1)^(1) 1/(3^2 - x^2)*dx`

= `(1)/(2 xx 3)[log|(3 + x)/(3 - x)|]_(-1)^(1)`

= `(1)/(6)[log (4/2) - log(2/4)]`

= `(1)/(6)[log(2/(1/2))]`

= `(1)/(6)log 4`

= `(1)/(6)log 2^2`

= `(1)/(6) xx 2log2`

= `(1)/(3)log2`                                 ...(2)

I2 = `int_(-1)^(1) x^3/(9 - x^2)*dx`

Let f(x) = `x^3/(9 - x^2)`

∴ f(– x) = `(- x)^3/(9 - (- x)^2`

= `(-x)^3/(9 - x^2)`

= – f(x)

∴ f is an odd function.

∴ `int_(-1)^(1) f(x)*dx` = 0

∴ I2 = `int_(-1)^(1) x^3/(9 - x^2)*dx` = 0        ...(3)

From (1),(2) and (3), we get

I = `(1)/(3)log2 + 0`

= `(1)/(3)log2`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 176]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.07 | Page 176

RELATED QUESTIONS

Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


Evaluate `int_1^3 log x  "d"x`


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Solve the following `int_1^3 x^2log x dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Evaluate the following definite intergral:

`int _1^3logxdx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


`int_a^b f(x) dx = int_a^b f (t) dt`


Evaluate the following definite integral:

`int_1^3 logx  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5) · dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×