Advertisements
Advertisements
Question
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Solution
Let I = `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
= `int_(-1)^(1)[1/(9 - x^2) + x^3/(9 - x^2)]*dx`
= `int_(-1)^(1) 1/(9 - x^2)*dx + int_(-1)^(1) x^3/(9 - x^2)*dx`
∴ I = I1 + I2 ....(1)
I1 = `int_(-1)^(1) 1/(3^2 - x^2)*dx`
= `(1)/(2 xx 3)[log|(3 + x)/(3 - x)|]_(-1)^(1)`
= `(1)/(6)[log (4/2) - log(2/4)]`
= `(1)/(6)[log(2/(1/2))]`
= `(1)/(6)log 4`
= `(1)/(6)log 2^2`
= `(1)/(6) xx 2log2`
= `(1)/(3)log2` ...(2)
I2 = `int_(-1)^(1) x^3/(9 - x^2)*dx`
Let f(x) = `x^3/(9 - x^2)`
∴ f(– x) = `(- x)^3/(9 - (- x)^2`
= `(-x)^3/(9 - x^2)`
= – f(x)
∴ f is an odd function.
∴ `int_(-1)^(1) f(x)*dx` = 0
∴ I2 = `int_(-1)^(1) x^3/(9 - x^2)*dx` = 0 ...(3)
From (1),(2) and (3), we get
I = `(1)/(3)log2 + 0`
= `(1)/(3)log2`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
Evaluate `int_1^3 log x "d"x`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`