English

Evaluate the following : ∫0π216-cosx⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`

Sum

Solution

Let I = `int_0^(pi/2) 1/(6 - cosx)*dx`

Put `tan(x/2)` = t

∴ x = 2 tan–1 t

∴ dx = `(2dt)/(1 + t)`
and
cos x = `(1 - t^2)/(1 + t^2)`

When x =  `pi/(2), t = tan(pi/2)` = 1

When x = 0, t = tan 0 = 0

∴ I = `((2dt)/(1 + t^2))/(6 - cos((1 - t^2)/(1 + t^2))`

= `int_0^1 (2dt)/(6(1 + t^2) + 1(1 - t^2)`

= `2 int_0^1 (1)/(t^2 + 7)*dt`

= `2[1/35 tan^-1  t/5]_0^1`

= `2[1/35 tan^-1  1/(3) - 1/(5) tan^-1 0]`

= `(2)/(35) tan^-1  (1)/(3) - (7)/(5) xx 0`

= `(2)/sqrt(35) tan^-1  sqrt(7/5)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 176]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.02 | Page 176

RELATED QUESTIONS

Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Solve the following `int_1^3 x^2log x dx`


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate:

`int_0^1 |x| dx`


Solve the following.

`int_1^3 x^2 log x dx `


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Solve the following.

`int_1^3x^2 logx  dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×