Advertisements
Advertisements
Question
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Solution
Let I = `int_0^(pi/2) 1/(6 - cosx)*dx`
Put `tan(x/2)` = t
∴ x = 2 tan–1 t
∴ dx = `(2dt)/(1 + t)`
and
cos x = `(1 - t^2)/(1 + t^2)`
When x = `pi/(2), t = tan(pi/2)` = 1
When x = 0, t = tan 0 = 0
∴ I = `((2dt)/(1 + t^2))/(6 - cos((1 - t^2)/(1 + t^2))`
= `int_0^1 (2dt)/(6(1 + t^2) + 1(1 - t^2)`
= `2 int_0^1 (1)/(t^2 + 7)*dt`
= `2[1/35 tan^-1 t/5]_0^1`
= `2[1/35 tan^-1 1/(3) - 1/(5) tan^-1 0]`
= `(2)/(35) tan^-1 (1)/(3) - (7)/(5) xx 0`
= `(2)/sqrt(35) tan^-1 sqrt(7/5)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate:
`int_0^1 |x| dx`
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`