Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
उत्तर
Let I = `int_0^(pi/2) 1/(6 - cosx)*dx`
Put `tan(x/2)` = t
∴ x = 2 tan–1 t
∴ dx = `(2dt)/(1 + t)`
and
cos x = `(1 - t^2)/(1 + t^2)`
When x = `pi/(2), t = tan(pi/2)` = 1
When x = 0, t = tan 0 = 0
∴ I = `((2dt)/(1 + t^2))/(6 - cos((1 - t^2)/(1 + t^2))`
= `int_0^1 (2dt)/(6(1 + t^2) + 1(1 - t^2)`
= `2 int_0^1 (1)/(t^2 + 7)*dt`
= `2[1/35 tan^-1 t/5]_0^1`
= `2[1/35 tan^-1 1/(3) - 1/(5) tan^-1 0]`
= `(2)/(35) tan^-1 (1)/(3) - (7)/(5) xx 0`
= `(2)/sqrt(35) tan^-1 sqrt(7/5)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_1^2 x^2*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
`int_1^2 x^2 "d"x` = ______
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`