मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫0π (sin-1x+cos-1x)3sin3x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`

बेरीज

उत्तर

Let I = `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`

We know that, sin–1x + cos–1x = `pi/(2)`
and
sin 3x = 3 sin x – 4 sin3x

∴ 4sin3x = 3 sin x – sin 3x

∴ sin3x = `3/4 sinx - 1/4 sin3x`

∴ I = `int_0^pi (pi/2)^3[3/4 sin x - 1/4 sin 3x]*dx`

= `pi^3/(8) xx 3/4 int_0^pi sin x*dx - pi^2/(8) xx 1/4 int_0^pi sin3x`

= `(3pi^3)/(32) [- cos pi - ( - cos 0)] - pi^3/(32)[- (cos 3pi)/(3) - ((- cos0)/3)]`

= `(3pi^3)/(32)[1 + 1] - pi^3/(32)[1/3 + 1/3]`

= `(6pi^3)/(32) - (2pi^3)/(96)`

= `(18pi^3 - 2pi^3)/(96)`

= `(16pi^3)/(96)`

= `pi^3/(6)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.08 | पृष्ठ १७६

संबंधित प्रश्‍न

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Evaluate the following:

`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`


Choose the correct alternative :

`int_2^3 x^4*dx` =


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


Solve the following : `int_(-4)^(-1) (1)/x*dx`


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


`int_1^2 x^2  "d"x` = ______


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


Evaluate the following integral:

`int_0^1 x(1-x)^5dx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


The principle solutions of the equation cos θ = `1/2` are ______.


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5) · dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×