Advertisements
Advertisements
Question
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Solution
Let I = `int_0^"a" x^2("a" - x)^(3/2)*dx`
= `int_0^"a"("a" -x)^2 ["a" - ("a" - x)]^(3/2)*dx ...[because int_0^"a" f(x)*dx = int_0^"a" f("a" - x)*dx]`
= `int_0^"a" ("a"^2 - 2"a"x + x^2)x^(3/2)*dx`
= `int_0^"a"("a"^2x^(3/2) - 2"a"x^(5/2) + x^(7/2))*dx`
= `"a"^2 int_0^"a" x^(3/2)*dx - 2"a" int_0^"a" x^(5/2)*dx + int_0^"a"x^(7/2)*dx`
= `"a"^2 [(x^(5/2))/(5/2)]_0^"a" - 2"a"[(x^(7/2))/(7/2)]_0^"a" + [(x^(9/2))/(9/2)]_0^"a"`
= `(2"a"^2)/(5)[("a")^(5/2) - 0] - (4"a")/(7)[("a")^(7/2) - 0] + (2)/(9)[("a")^(9/2) - 0]`
= `(2)/(5)"a"^(9/2) - (4)/(7)"a"^(9/2) + (2)/(9)"a"^(9/2)`
= `(2/5 - 4/7 + 2/9)"a"^(9/2)`
= `((126 - 180 + 70)/315)"a"^(9/2)`
∴ I = `(16)/(315)"a"^(9/2)`.
APPEARS IN
RELATED QUESTIONS
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 logxdx`