English

Prove that: ∫02af(x)dx=∫0af(x)dx+∫0af(2a-x)dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`

Sum

Solution

 `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`

R.H.S : `int_0^a f(x) dx + int_0^a f(2a - x)dx`

= I1 + I2  ...(i)

Consider I2 = `int_0^a f(2a - x)dx`

Put 2a − x = t

i.e. x = 2a − t

∴ −1 dx = 1 dt

`\implies` dx = − dt

As x varies from 0 to 2a, t varies from 2a to 0

I = `int_(2a)^a f(t) (- dt)`

= `- int_(2a)^a f(t) dt`

= `int_0^(2a) f(t) dt`  ...`(int_a^b f(x)dx = -int_b^a f(x)dx)`

= `int_0^(2a) f(x) dx`  ...`(int_a^b f(x)dx = int_a^b f(t)dx)`

∴ `int_0^a f(x)dx = int_0^(2a) f(x)dx`

From equation (i)

`int_0^a f(x)dx + int_0^a f(2a - x)dx = int_0^a f(x)dx + int_0^(2a) f(x)dx`

= `int_0^(2a) f(x)dx` : L.H.S

Thus, `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
2022-2023 (March) Official

RELATED QUESTIONS

 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate : `int_0^1 x tan^-1x*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`


Solve the following : `int_4^9 (1)/sqrt(x)*dx`


Solve the following : `int_2^3 x/(x^2 + 1)*dx`


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite integral:

`int_1^3 logx  dx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×