Advertisements
Advertisements
प्रश्न
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
पर्याय
I1 = `(1)/(3)"I"_2`
I1 + I2 = 0
I1 = 2I2
I1 = I2
उत्तर
I1 = I2
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Solve the following.
`int_1^3 x^2 logxdx`
Evaluate the following definite intergral:
`int_1^3 log x dx`