मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Choose the correct option from the given alternatives : Let I1 = andI∫ee2dxlogx and I2=∫12exx⋅dx, then - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then

पर्याय

  • I1 = `(1)/(3)"I"_2`

  • I1 + I = 0

  • I1 = 2I 

  • I1 = I 

MCQ

उत्तर

I1 = I 

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Definite Integration
Miscellaneous Exercise 4 | Q 1.08 | पृष्ठ १७५

संबंधित प्रश्‍न

Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Choose the correct alternative :

`int_2^3 x^4*dx` =


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_(-4)^(-1) (1)/x*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x  dx` = k then k = ______.


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2) dx` 


Solve the following.

`int_1^3 x^2 logxdx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×