Advertisements
Advertisements
प्रश्न
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
पर्याय
0
3
9
– 9
उत्तर
Let I = `int_(-9)^9 x^3/(4 - x^2)*dx`
Let f(x) = `x^3/(4 - x^2)`
∴ f(– x) = `(-x)^2/(4 - (-x)^2`
= `-x^3/(4 - x^2)`
= – f(x)
∴ f(x) is an odd function.
∴ `int_(-9)^9 x^3/(4 - x^2)*dx = 0. ...[because int_("a")^"a" f(x) = 0, if f(x) "odd function"]`
APPEARS IN
संबंधित प्रश्न
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Choose the correct alternative :
`int_0^2 e^x*dx` =
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`