Advertisements
Advertisements
प्रश्न
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
उत्तर
Let I = `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x` ......(i)
= `int_1^2 (sqrt(1 + 2 - x))/(sqrt(3 - (1 + 2 - x)) + sqrt(1 + 2 - x)) "d"x` ......`[because int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x]`
∴ I = `int_1^2 (sqrt(3 - x))/(sqrt(x) + sqrt(3 - x)) "d"x` ......(ii)
Adding (i) and (ii), we get
2I = `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x + int_1^2 (sqrt(3 - x))/(sqrt(x) + sqrt(3 - x)) "d"x`
= `int_1^2 (sqrt(x) + sqrt(3 - x))/(sqrt(x) + sqrt(3 - x)) "d"x`
= `int_1^2 1* "d"x`
= `[x]_1^2`
∴ 2I = 2 – 1 = 1
∴ I = `1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intlogx/(1+logx)^2dx`
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate : ∫ log (1 + x2) dx
Evaluate = `int (tan x)/(sec x + tan x)` . dx
`int_0^2 e^x dx` = ______.
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
`int_4^9 1/sqrt(x)dx` = ______.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate:
`int_0^6 |x + 3|dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`