Advertisements
Advertisements
प्रश्न
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
उत्तर
Let I = `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
= `int_(pi/6)^(pi/3) sqrt(cosx)/(sqrt(sinx) + sqrt(cos x)) dx` ......(i)
Using `int_a^b f(x) dx = int_a^b f(a + b - x) dx`
I = `int_(pi/6)^(pi/3) sqrt(cos(pi/6 + pi/3 - x))/(sqrt(sin(pi/6 + pi/3 - x)) + sqrt(cos(pi/6 + pi/3 - x)))`
I = `int_(pi/6)^(pi/3) sqrt(sinx)/(sqrt(cosx) + sqrt(sinx)) dx` ......(ii)
Adding (i) and (ii), we get
2I = `int_(pi/6)^(pi/3) sqrt(cosx)/(sqrt(sinx) + sqrt(cosx)) dx + int_(pi/6)^(pi/3) sqrt(sinx)/(sqrt(cosx) + sqrt(sinx)) dx`
2I = `int_(pi/6)^(pi/3) dx`
= `[x]_(pi/6)^(pi/3)`
= `pi/3 - pi/6`
= `pi/6`
Hence, I = `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)) = pi/12`
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_-1^1x^2/(1+x^2) dx=` ______.
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`