मराठी

Evaluate: ∫π6π3dx1+tanx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`

बेरीज

उत्तर

Let I = `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`

= `int_(pi/6)^(pi/3) sqrt(cosx)/(sqrt(sinx) + sqrt(cos x)) dx`  ......(i)

Using `int_a^b f(x) dx = int_a^b f(a + b - x) dx`

I = `int_(pi/6)^(pi/3) sqrt(cos(pi/6 + pi/3 - x))/(sqrt(sin(pi/6 + pi/3 - x)) + sqrt(cos(pi/6 + pi/3 - x)))`

I = `int_(pi/6)^(pi/3) sqrt(sinx)/(sqrt(cosx) + sqrt(sinx)) dx`  ......(ii)

Adding (i) and (ii), we get

2I = `int_(pi/6)^(pi/3) sqrt(cosx)/(sqrt(sinx) + sqrt(cosx)) dx + int_(pi/6)^(pi/3) sqrt(sinx)/(sqrt(cosx) + sqrt(sinx)) dx`

2I = `int_(pi/6)^(pi/3) dx`

= `[x]_(pi/6)^(pi/3)`

= `pi/3 - pi/6`

= `pi/6`

Hence, I = `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)) = pi/12`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Sample

संबंधित प्रश्‍न

By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_2^3 x/(x^2 - 1)` dx = ______


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_-1^1x^2/(1+x^2)  dx=` ______.


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×