Advertisements
Advertisements
प्रश्न
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
पर्याय
4
2
1
0
उत्तर
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is 4.
Explanation:
`int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`
Taking LHS = `int_0^(2π) cos^2 x dx`
= `2int_0^π cos^2 x dx` ...[∵ cos2 x is an even function]
= `2 xx 2int_0^(π/2) cos^2 x dx` ...[∵ cos2 x is an even function]
= `4int_0^(π/2) cos^2 x dx`
On comparing both sides, we get
k = 4.
APPEARS IN
संबंधित प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_0^2 e^x dx` = ______.
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
`int_2^3 x/(x^2 - 1)` dx = ______
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_0^1 "e"^(5logx) "d"x` = ______.
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
`int_a^b f(x)dx` = ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
Evaluate `int_-1^1 |x^4 - x|dx`.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Solve.
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^3logx dx`