मराठी

If ππ∫02πcos2x dx=k∫0π2cos2x dx, then the value of k is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.

पर्याय

  • 4

  • 2

  • 1

  • 0

MCQ
रिकाम्या जागा भरा

उत्तर

If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is 4.

Explanation:

`int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`

Taking LHS = `int_0^(2π) cos^2 x  dx`

= `2int_0^π cos^2 x  dx` ...[∵ cos2 x is an even function]

= `2 xx 2int_0^(π/2) cos^2 x  dx`  ...[∵ cos2 x is an even function]

= `4int_0^(π/2) cos^2 x  dx`  

On comparing both sides, we get

k = 4.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Outside Delhi Set 3

संबंधित प्रश्‍न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_0^2 e^x dx` = ______.


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


`int_2^3 x/(x^2 - 1)` dx = ______


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


`int_0^1 "e"^(5logx) "d"x` = ______.


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


`int_a^b f(x)dx` = ______.


Evaluate: `int_0^π 1/(5 + 4 cos x)dx`


Evaluate `int_-1^1 |x^4 - x|dx`.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×