Advertisements
Advertisements
प्रश्न
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
उत्तर
`int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx = int_(-π//4)^(π//4) (2 cos^2 x - 1)/(2 cos^2 x)dx`
= `1/2 . 2 int_0^(π//4) (2 - sec^2 x)dx` ...[even function]
= `1/2 . 2[2x - tan x]_0^(π//4)`
= `π/2 - 1`
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Evaluate : ∫ log (1 + x2) dx
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_0^1 "e"^(2x) "d"x` = ______
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_0^{pi/2} xsinx dx` = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^1 "e"^(5logx) "d"x` = ______.
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`