मराठी

Evaluate: π∫0π4log(1+tanx)dx. - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(π/4) log(1 + tanx)dx`.

बेरीज

उत्तर

Let I = `int_0^(π/4) log_e (1 + tan x)dx`  ...(i)

`\implies` I = `int_0^(π/4) log_e (1 + tan(π/4 - x))dx`, 

Using `int_0^a f(x)dx = int_0^a f(a - x)dx`

`\implies` I = `int_0^(π/4) log_e (1 + (1 - tanx)/(1 + tanx))dx`

= `int_0^(π/4) log_e (2/(1 + tanx))dx`

= `int_0^(π/4) log_e 2dx - I`     ...(Using ...(i))

`\implies` 2I = `π/4 log_e 2`

`\implies` I = `π/8 log_e 2`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (March) Board Sample Paper

संबंधित प्रश्‍न

Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Evaluate :  ∫ log (1 + x2) dx


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


`int_0^1|3x - 1|dx` equals ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


Evaluate: `int_0^π 1/(5 + 4 cos x)dx`


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate: `int_0^π x/(1 + sinx)dx`.


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×