Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
उत्तर
Let I = `int_0^(π/4) log_e (1 + tan x)dx` ...(i)
`\implies` I = `int_0^(π/4) log_e (1 + tan(π/4 - x))dx`,
Using `int_0^a f(x)dx = int_0^a f(a - x)dx`
`\implies` I = `int_0^(π/4) log_e (1 + (1 - tanx)/(1 + tanx))dx`
= `int_0^(π/4) log_e (2/(1 + tanx))dx`
= `int_0^(π/4) log_e 2dx - I` ...(Using ...(i))
`\implies` 2I = `π/4 log_e 2`
`\implies` I = `π/8 log_e 2`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate : ∫ log (1 + x2) dx
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
`int_0^1|3x - 1|dx` equals ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate: `int_0^π x/(1 + sinx)dx`.
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`