English

Evaluate: π∫0π4log(1+tanx)dx. - Mathematics

Advertisements
Advertisements

Question

Evaluate: `int_0^(π/4) log(1 + tanx)dx`.

Sum

Solution

Let I = `int_0^(π/4) log_e (1 + tan x)dx`  ...(i)

`\implies` I = `int_0^(π/4) log_e (1 + tan(π/4 - x))dx`, 

Using `int_0^a f(x)dx = int_0^a f(a - x)dx`

`\implies` I = `int_0^(π/4) log_e (1 + (1 - tanx)/(1 + tanx))dx`

= `int_0^(π/4) log_e (2/(1 + tanx))dx`

= `int_0^(π/4) log_e 2dx - I`     ...(Using ...(i))

`\implies` 2I = `π/4 log_e 2`

`\implies` I = `π/8 log_e 2`.

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (March) Board Sample Paper

RELATED QUESTIONS

By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


Which of the following is true?


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


`int_4^9 1/sqrt(x)dx` = ______.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate:

`int_0^6 |x + 3|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×