मराठी

By using the properties of the definite integral, evaluate the integral: ∫0πlog(1+cosx)dx - Mathematics

Advertisements
Advertisements

प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`

बेरीज

उत्तर

Let `I = int_0^pi log (1 + cos x)  dx`                ....(i)

`I = int_0^pi log [1 + cos (pi - x)] dx`

`[∵ int_0^a f (x) dx = int_0^a f (a - x)  dx]`

`= int_0^pi log (1 - cos x) dx`                              .....(ii)

Adding (i) and (ii), we get

`2 I = int_0^pi [log (1 + cos x) + log (1 - cos x)]  dx`

`= int_0^pi log (1 - cos^2 x)  dx`

`= int_0^pi log sin^2 x  dx`

`= 2 int_0^pilog sin x  dx`

⇒ `I = int_0^pi log sin x  dx`

`= 2 int_0^(pi/2) log sin x  dx = 2I_1`

`[∵ int_0^(2a) f (x) dx = 2 int_0^a f (x) dx, "if" f (2a - x) = f (x)]`

Where `I_1 = int_0^(pi/2) log sin x dx`                ...(iii)

Then, `I_1 = int_0^(pi/2) log sin (pi/2 - x) dx`

⇒ `I_1 = int_0^(pi/2) log cos x dx`                  ....(iv)

Adding (iii) and (iv), we get

`2I_1 = int_0^(pi/2) log sin x dx + int_0^(pi/2) log cos x  dx`

`= int_0^(pi/2) (log sin x + log cos x)  dx`

`= int_0^(pi/2) log (sin x cos x) dx`

`= int_0^(pi/2) log ((2sin x cos x)/2)`

`= int_0^(pi/2) log ((sin 2x)/2) dx`

`= int_0^(pi/2) log sin 2 x dx - int_0^(pi/2) log 2 dx`

`= int_0^(pi/2) log sin 2x  dx - (log 2)[x]_0^(pi/2)`

`= int_0^(pi/2) log sin 2 x dx - (log 2) (pi/2 - 0)`

`= int_0^(pi/2) log sin 2x  dx - pi/2 log 2`

`= I_2 - pi/2 log 2`             .....(v)

Where `I_2 = int_0^(pi/2) log sin 2x dx`

Put 2x = t

⇒ 2dx = dt

When x = 0, t = 0

When `x = pi/2, t = pi`

∴ `I_2 = 1/2 int_0^pi log sin t dt`

`= 1/2 *2 int_0^(pi/2) log sin t dt`       `...[∵ log sin (pi -t) = log sint]`

`= int_0^(pi/2) log sin x = I_1`

∴ From (v), we get

`2I_1 = I_2 - pi/2 log 2`

⇒ `2I_1 = I_1 - pi/2 log 2`

⇒ `I_1 = pi/2 log 2`

∴ `I = 2 xx (-pi/2 log 2)`

= - π log 2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.11 | Q 16 | पृष्ठ ३४७

संबंधित प्रश्‍न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


`int_0^2 e^x dx` = ______.


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


`int_0^1 1/(2x + 5) dx` = ______.


`int_a^b f(x)dx` = ______.


Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×