Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
उत्तर
Let `I = int_0^pi log (1 + cos x) dx` ....(i)
`I = int_0^pi log [1 + cos (pi - x)] dx`
`[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`
`= int_0^pi log (1 - cos x) dx` .....(ii)
Adding (i) and (ii), we get
`2 I = int_0^pi [log (1 + cos x) + log (1 - cos x)] dx`
`= int_0^pi log (1 - cos^2 x) dx`
`= int_0^pi log sin^2 x dx`
`= 2 int_0^pilog sin x dx`
⇒ `I = int_0^pi log sin x dx`
`= 2 int_0^(pi/2) log sin x dx = 2I_1`
`[∵ int_0^(2a) f (x) dx = 2 int_0^a f (x) dx, "if" f (2a - x) = f (x)]`
Where `I_1 = int_0^(pi/2) log sin x dx` ...(iii)
Then, `I_1 = int_0^(pi/2) log sin (pi/2 - x) dx`
⇒ `I_1 = int_0^(pi/2) log cos x dx` ....(iv)
Adding (iii) and (iv), we get
`2I_1 = int_0^(pi/2) log sin x dx + int_0^(pi/2) log cos x dx`
`= int_0^(pi/2) (log sin x + log cos x) dx`
`= int_0^(pi/2) log (sin x cos x) dx`
`= int_0^(pi/2) log ((2sin x cos x)/2)`
`= int_0^(pi/2) log ((sin 2x)/2) dx`
`= int_0^(pi/2) log sin 2 x dx - int_0^(pi/2) log 2 dx`
`= int_0^(pi/2) log sin 2x dx - (log 2)[x]_0^(pi/2)`
`= int_0^(pi/2) log sin 2 x dx - (log 2) (pi/2 - 0)`
`= int_0^(pi/2) log sin 2x dx - pi/2 log 2`
`= I_2 - pi/2 log 2` .....(v)
Where `I_2 = int_0^(pi/2) log sin 2x dx`
Put 2x = t
⇒ 2dx = dt
When x = 0, t = 0
When `x = pi/2, t = pi`
∴ `I_2 = 1/2 int_0^pi log sin t dt`
`= 1/2 *2 int_0^(pi/2) log sin t dt` `...[∵ log sin (pi -t) = log sint]`
`= int_0^(pi/2) log sin x = I_1`
∴ From (v), we get
`2I_1 = I_2 - pi/2 log 2`
⇒ `2I_1 = I_1 - pi/2 log 2`
⇒ `I_1 = pi/2 log 2`
∴ `I = 2 xx (-pi/2 log 2)`
= - π log 2
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
`int_0^2 e^x dx` = ______.
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
`int_0^1 1/(2x + 5) dx` = ______.
`int_a^b f(x)dx` = ______.
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`