Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
उत्तर
Let `I = int_0^pi log (1 + cos x) dx` ....(i)
`I = int_0^pi log [1 + cos (pi - x)] dx`
`[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`
`= int_0^pi log (1 - cos x) dx` .....(ii)
Adding (i) and (ii), we get
`2 I = int_0^pi [log (1 + cos x) + log (1 - cos x)] dx`
`= int_0^pi log (1 - cos^2 x) dx`
`= int_0^pi log sin^2 x dx`
`= 2 int_0^pilog sin x dx`
⇒ `I = int_0^pi log sin x dx`
`= 2 int_0^(pi/2) log sin x dx = 2I_1`
`[∵ int_0^(2a) f (x) dx = 2 int_0^a f (x) dx, "if" f (2a - x) = f (x)]`
Where `I_1 = int_0^(pi/2) log sin x dx` ...(iii)
Then, `I_1 = int_0^(pi/2) log sin (pi/2 - x) dx`
⇒ `I_1 = int_0^(pi/2) log cos x dx` ....(iv)
Adding (iii) and (iv), we get
`2I_1 = int_0^(pi/2) log sin x dx + int_0^(pi/2) log cos x dx`
`= int_0^(pi/2) (log sin x + log cos x) dx`
`= int_0^(pi/2) log (sin x cos x) dx`
`= int_0^(pi/2) log ((2sin x cos x)/2)`
`= int_0^(pi/2) log ((sin 2x)/2) dx`
`= int_0^(pi/2) log sin 2 x dx - int_0^(pi/2) log 2 dx`
`= int_0^(pi/2) log sin 2x dx - (log 2)[x]_0^(pi/2)`
`= int_0^(pi/2) log sin 2 x dx - (log 2) (pi/2 - 0)`
`= int_0^(pi/2) log sin 2x dx - pi/2 log 2`
`= I_2 - pi/2 log 2` .....(v)
Where `I_2 = int_0^(pi/2) log sin 2x dx`
Put 2x = t
⇒ 2dx = dt
When x = 0, t = 0
When `x = pi/2, t = pi`
∴ `I_2 = 1/2 int_0^pi log sin t dt`
`= 1/2 *2 int_0^(pi/2) log sin t dt` `...[∵ log sin (pi -t) = log sint]`
`= int_0^(pi/2) log sin x = I_1`
∴ From (v), we get
`2I_1 = I_2 - pi/2 log 2`
⇒ `2I_1 = I_1 - pi/2 log 2`
⇒ `I_1 = pi/2 log 2`
∴ `I = 2 xx (-pi/2 log 2)`
= - π log 2
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
`int_0^1 "e"^(2x) "d"x` = ______
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^pi x*sin x*cos^4x "d"x` = ______.
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
Which of the following is true?
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate `int_-1^1 |x^4 - x|dx`.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`