Advertisements
Advertisements
प्रश्न
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
विकल्प
–1
0
1
2
उत्तर
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is 0.
Explanation:
f(x) = `e^(cos^2x) sin^3 (2n + 1)x`
f(–x) = `e^(cos^2(-x)) sin^3 (2n + 1)(-x)`
f(–x) = `-e^(cos^2x) sin^3 (2n + 1)x`
∵ f(–x) = –f(x)
So, `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` = 0
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate : `intsec^nxtanxdx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
Evaluate : ∫ log (1 + x2) dx
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`