हिंदी

ABCD is a rhombus whose diagonals intersect at E . Then EA→+EB→+EC→+ED→ equals to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

ABCD is a rhombus whose diagonals intersect at E . Then `vec(EA) + vec(EB) + vec(EC) + vec(ED)` equals to ______.

विकल्प

  • `vec(0)`

  • `vec(AD)`

  • `2vec(BD)`

  • `2vec(AD)`

MCQ
रिक्त स्थान भरें

उत्तर

ABCD is a rhombus whose diagonals intersect at E . Then `vec(EA) + vec(EB) + vec(EC) + vec(ED)` equals to `underlinebb(vec(0))`.

Explanation:

Given, ABCD is a rhombus whose diagonals bisect each other.

`|vec(EA)| = |vec(EC)|` and `|vec(EB)| = |vec(ED)|` but since they are opposite to each other so they are of opposite signs

`\implies vec(EA) = -vec(EC)` and `vec(EB) = -vec(ED)`


`\implies vec(EA) + vec(EC) = vec(0)`  ...(i)

and `vec(EB) + vec(ED) = vec(0)`  ...(ii)

Adding (i) and (ii), we get

`vec(EA) + vec(EB) + vec(EC) + vec(ED) = vec(0)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (March) Board Sample Paper

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

In triangle ABC, which of the following is not true:


A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl’s displacement from her initial point of departure.


If `veca = vecb + vecc`, then is it true that `|veca| = |vecb| + |vecc|`? Justify your answer.


If `veca = hati  +hatj + hatk, vecb = 2hati - hatj +  3hatk and vecc = hati - 2hatj + hatk` find a unit vector parallel to the vector `2veca - vecb + 3vecc`.


The two adjacent sides of a parallelogram are `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to its diagonal. Also, find its area.


Let `veca = hati + 4hatj + 2hatk, vecb = 3hati - 2hatj + 7hatk ` and `vecc = 2hati - hatj + 4hatk`. Find a vector `vecd` which is perpendicular to both `veca` and `vecb`, and `vecc.vecd = 15`.


ABCD is a quadrilateral. Find the sum the vectors \[\overrightarrow{BA} , \overrightarrow{BC} , \overrightarrow{CD}\] and \[\overrightarrow{DA}\]


Prove that the sum of all vectors drawn from the centre of a regular octagon to its vertices is the zero vector.


ABCD is a parallelogram and P is the point of intersection of its diagonals. If O is the origin of reference, show that
\[\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = 4 \vec{OP}\]


ABCD are four points in a plane and Q is the point of intersection of the lines joining the mid-points of AB and CD; BC and AD. Show that\[\vec{PA} + \vec{PB} + \vec{PC} + \vec{PD} = 4 \vec{PQ}\], where P is any point.


Prove that the points \[\hat{i} - \hat{j} , 4 \hat{i} + 3 \hat{j} + \hat{k} \text{ and }2 \hat{i} - 4 \hat{j} + 5 \hat{k}\] are the vertices of a right-angled triangle.


Write \[\overrightarrow{PQ} + \overrightarrow{RP} + \overrightarrow{QR}\] in the simplified form.


Find the sum of the following vectors: \[\overrightarrow{a} = \hat{i} - 2 \hat{j} , \overrightarrow{b} = 2 \hat{i} - 3 \hat{j} , \overrightarrow{c} = 2 \hat{i} + 3 \hat{k} .\]


If `veca=2hati+hatj-hatk, vecb=4hati-7hatj+hatk`, find a vector \[\vec{c}\] such that \[\vec{a} \times \vec{c} = \vec{b} \text { and }\vec{a} \cdot \vec{c} = 6\].


Find the unit vector in the direction of the sum of the vectors `2hati + 3hatj - hatk and 4hati - 3hatj + 2hatk .`


Show that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.


If `6hati + 10hatj + 3hatk = x(hati + 3hatj + 5hatk) + y(hati - hatj + 5hatk) + z(hati + 3hatj - 4hatk)`, then ______


`[(bar"a", bar"b" + bar"c", bar"a" + bar"b" + bar"c")]` = ______.


`veca, vecb` and `vecc` are perpendicular to `vecb + vecc, vecc + veca` and `veca + vecb` respectively and if `|veca + vecb|` = 6, `|vecb + vecc|` = 8 and `|vecc + veca|` = 10, then `|veca + vecb + vecc|` is equal to


A vector whose initial and terminal point continues is known as:-


Find the value of `x` and `y`. so that the vectors `2hatj + 3hatj` and `xhati + yhati` are equal


If in ΔABC, `vec(BA) = 2veca` and `vec(BC) = 3vecb`, then `vec(AC)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×