हिंदी

The two adjacent sides of a parallelogram are 2i^-4j^+5k^ and i^-2j^-3k^. Find the unit vector parallel to its diagonal. Also, find its area. - Mathematics

Advertisements
Advertisements

प्रश्न

The two adjacent sides of a parallelogram are `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to its diagonal. Also, find its area.

योग

उत्तर

The adjacent sides of a parallelogram are given by `veca = 2hati - 4hatj + 5hatk, vecb = hati - 2hatj - 3hatk`

Then the diagonal of a parallelogram is given by `veca + vecb`.

`veca + vecb = (2 + 1)hati + (-4 - 2)hatj + (5 - 3)hatk = 3hati - 6hatj + 2hatk`

Thus, the unit vector parallel to the diagonal is,

`(veca + vecb)/|veca + vecb| = ((3hati - 6hatj + 2hatk))/sqrt(3^2 + (-6)^2 + 2^2)`

`= ((3hati - 6hatj + 2hatk))/sqrt(9 + 36 + 4)`

`= 3/7hati- 6/7hatj + 2/7hatk`

Area of ​​parallelogram ABCD

⇒ `|veca xx vecb| = |(hati, hatj, hatk), (2, -4, 5), (1, -2, -3)|`

`= hati(12 + 10) - hatj(-6 - 5) + hatk(-4 + 4)`

`= 22hati + 11hatj = 11(2hati + hatj)`

`= |veca xx vecb| = 11sqrt(2^2 + 1^2) `

`= 11sqrt5`

Therefore the area of ​​the parallelogram is `11sqrt5` square units.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Vector Algebra - Exercise 10.5 [पृष्ठ ४५८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 10 Vector Algebra
Exercise 10.5 | Q 10 | पृष्ठ ४५८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the scalar and vector components of the vector with initial point (2, 1) and terminal point (–5, 7).


In triangle ABC, which of the following is not true:


If `veca` and `vecb` are two collinear vectors, then which of the following are incorrect:


A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl’s displacement from her initial point of departure.


Let `veca = hati + 4hatj + 2hatk, vecb = 3hati - 2hatj + 7hatk ` and `vecc = 2hati - hatj + 4hatk`. Find a vector `vecd` which is perpendicular to both `veca` and `vecb`, and `vecc.vecd = 15`.


ABCDE is a pentagon, prove that 
\[\overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{BC} + \overrightarrow{DC} + \overrightarrow{ED} + \overrightarrow{AC} = 3\overrightarrow{AC}\]


Prove that the sum of all vectors drawn from the centre of a regular octagon to its vertices is the zero vector.


ABCD is a parallelogram and P is the point of intersection of its diagonals. If O is the origin of reference, show that
\[\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = 4 \vec{OP}\]


ABCD are four points in a plane and Q is the point of intersection of the lines joining the mid-points of AB and CD; BC and AD. Show that\[\vec{PA} + \vec{PB} + \vec{PC} + \vec{PD} = 4 \vec{PQ}\], where P is any point.


Prove that the points \[\hat{i} - \hat{j} , 4 \hat{i} + 3 \hat{j} + \hat{k} \text{ and }2 \hat{i} - 4 \hat{j} + 5 \hat{k}\] are the vertices of a right-angled triangle.


Write \[\overrightarrow{PQ} + \overrightarrow{RP} + \overrightarrow{QR}\] in the simplified form.


Find the sum of the following vectors: \[\overrightarrow{a} = \hat{i} - 2 \hat{j} , \overrightarrow{b} = 2 \hat{i} - 3 \hat{j} , \overrightarrow{c} = 2 \hat{i} + 3 \hat{k} .\]


If `veca=2hati+hatj-hatk, vecb=4hati-7hatj+hatk`, find a vector \[\vec{c}\] such that \[\vec{a} \times \vec{c} = \vec{b} \text { and }\vec{a} \cdot \vec{c} = 6\].


Find the unit vector in the direction of the sum of the vectors `2hati + 3hatj - hatk and 4hati - 3hatj + 2hatk .`


Show that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.


Find the value of λ such that the vectors `vec"a" = 2hat"i" + lambdahat"j" + hat"k"` and `vec"b" = hat"i" + 2hat"j" + 3hat"k"` are orthogonal ______.


Let the position vectors of the points A, Band C be `veca, vecb` and `vecc` respectively. Let Q be the point of intersection of the medians of the triangle ΔABC. Then `vec(QA) + vec(QB) + vec(QC)` =


A vector whose initial and terminal point continues is known as:-


Find the value of `x` and `y`. so that the vectors `2hatj + 3hatj` and `xhati + yhati` are equal


ABCD is a rhombus whose diagonals intersect at E . Then `vec(EA) + vec(EB) + vec(EC) + vec(ED)` equals to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×