Advertisements
Advertisements
प्रश्न
Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are `P(2veca + vecb)` and `Q(veca - 3vecb)` externally in the ratio 1: 2. Also, show that P is the mid point of the line segment RQ.
उत्तर
It is given that `vec(OP) = 2veca + vecb, vec(OQ) = veca - 3vecb`
Given that point R divides a line segment joining two points P and Q in the ratio 1:2, we get using the section formula.
`vec("OR") = (2(2veca + vecb) - (veca - 3vecb))/((2 - 1))`
`= (4veca + 2vecb - veca + 3vecb)/1 = 3veca + 5`
Therefore, the position vector of point R is `3veca + 5vecb`
Position vector of midpoint of RQ = `((vec(OQ) + vec(OR)))/2`
= `((veca - 3vecb) + (3veca + 5vecb))/2`
= `2veca + vecb`
= `vec(OP)`
Therefore, P is the midpoint of the line segment RQ.
APPEARS IN
संबंधित प्रश्न
Show that the points A (1, –2, –8), B (5, 0, –2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.
Prove that: If the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
(Pythagoras's Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.
Prove using vectors: The quadrilateral obtained by joining mid-points of adjacent sides of a rectangle is a rhombus.
Prove that the diagonals of a rectangle are perpendicular if and only if the rectangle is a square.
If the median to the base of a triangle is perpendicular to the base, then triangle is isosceles.
Find the position vector of point R which divides the line joining the points P and Q whose position vectors are `2hati - hatj + 3hatk` and `- 5hati + 2hatj - 5hatk` in the ratio 3:2 is internally.
Find the position vector of midpoint M joining the points L(7, –6, 12) and N(5, 4, –2).
If the points A(3, 0, p), B(–1, q, 3) and C(–3, 3, 0) are collinear, then find
- the ratio in which the point C divides the line segment AB
- the values of p and q.
Prove that the median of a trapezium is parallel to the parallel sides of the trapezium and its length is half of the sum of the lengths of the parallel sides.
In Δ OAB, E is the midpoint of OB and D is the point on AB such that AD : DB = 2 : 1. If OD and AE intersect at P, then determine the ratio OP : PD using vector methods.
Find the volume of a parallelopiped whose coterimus edges are represented by the vectors `hat"i" + hat"k", hat"i" + hat"k", hat"i" + hat"j"`. Also find volume of tetrahedron having these coterminus edges.
If `bara, barb` and `barc` are position vectors of the points A, B, C respectively and `5bara - 3barb - 2barc = bar0`, then find the ratio in which the point C divides the line segement BA.
If G(a, 2, −1) is the centroid of the triangle with vertices P(1, 2, 3), Q(3, b, −4) and R(5, 1, c) then find the values of a, b and c
If A(5, 1, p), B(1, q, p) and C(1, −2, 3) are vertices of triangle and `"G"("r", -4/3, 1/3)` is its centroid then find the values of p, q and r
Prove that medians of a triangle are concurrent
Prove that altitudes of a triangle are concurrent
If A(1, 3, 2), B(a, b, - 4) and C(5, 1, c) are the vertices of triangle ABC and G(3, b, c) is its centroid, then
In a quadrilateral ABCD, M and N are the mid-points of the sides AB and CD respectively. If AD + BC = tMN, then t = ____________.
If P(2, 2), Q(- 2, 4) and R(3, 4) are the vertices of Δ PQR then the equation of the median through vertex R is ______.
If the position vectors of points A and B are `hati + 8hatj + 4hatk` and `7hati + 2hatj - 8hatk`, then what will be the position vector of the midpoint of AB?
Let `square`PQRS be a quadrilateral. If M and N are midpoints of the sides PQ and RS respectively then `bar"PS" + bar"OR"` = ______.
In ΔABC, P is the midpoint of BC, Q divides CA internally in the ratio 2:1 and R divides AB externally in the ratio 1:2, then ______.
If D, E, F are the mid points of the sides BC, CA and AB respectively of a triangle ABC and 'O' is any point, then, `|vec(AD) + vec(BE) + vec(CF)|`, is ______.
If `overlinea, overlineb, overlinec` are the position vectors of the points A, B, C respectively and `5overlinea + 3overlineb - 8overlinec = overline0` then find the ratio in which the point C divides the line segment AB.
The position vectors of three consecutive vertices of a parallelogram ABCD are `A(4hati + 2hatj - 6hatk), B(5hati - 3hatj + hatk)`, and `C(12hati + 4hatj + 5hatk)`. The position vector of D is given by ______.
Using vector method, prove that the perpendicular bisectors of sides of a triangle are concurrent.
Find the ratio in which the point C divides segment AB, if `5bara + 4barb - 9barc = bar0`
AB and CD are two chords of a circle intersecting at right angles to each other at P. If R is the centre of the circle, prove that:
`bar(PA) + bar(PB) + bar(PC) + bar(PD) = 2bar(PR)`
The position vector of points A and B are `6bara + 2 barb and bara - 3 barb`. If point C divides AB in the ratio 3 : 2, then show that the position vector of C is `3bara - barb`.
The position vector of points A and B are `6bara + 2 barb and bara - 3 barb`. If point C divides AB in the ratio 3 : 2, then show that the position vector of C is `3bara - barb`.
The position vector of points A and B are `6bara + 2 barb` and `bara-3 barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3bara -barb`.
The position vector of points A and B are `6bara + 2barb` and `bara - 3barb`. If the point C divides AB in the ratio 3 : 2, then show that the position vector of C is `3bara - barb`.
The position vector of points A and B are `6 bara + 2 barb and bara - 3 barb`. If the point C divides AB in the ratio 3 : 2 then show that the position vector of C is `3 bara - barb`.