Advertisements
Advertisements
प्रश्न
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
उत्तर
\[\text{We have}, \]
\[ \int_0^k \frac{1}{2 + 8 x^2} d x = \frac{\pi}{16}\]
\[ \Rightarrow \frac{1}{8} \int_0^k \frac{1}{\frac{1}{4} + x^2} d x = \frac{\pi}{16}\]
\[ \Rightarrow \frac{1}{4} \left[ \tan^{- 1} 2x \right]_0^k = \frac{\pi}{16}\]
\[ \Rightarrow \tan^{- 1} 2k = \frac{\pi}{4}\]
\[ \Rightarrow 2k = \tan\frac{\pi}{4}\]
\[ \Rightarrow 2k = 1\]
\[ \Rightarrow k = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsec^nxtanxdx`
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^{pi/2} xsinx dx` = ______
`int_0^{pi/2} cos^2x dx` = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_0^1 "e"^(5logx) "d"x` = ______.
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
`int_0^1 1/(2x + 5) dx` = ______.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate: `int_0^π x/(1 + sinx)dx`.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`
Evaluate the following definite intergral:
`int_1^3logx dx`