हिंदी

Evaluate: π∫0πx1+sinxdx. - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^π x/(1 + sinx)dx`.

योग

उत्तर

`int_0^π x/(1 + sinx)dx`

Let I = `int_0^π x/(1 + sinx)dx`  ...(i)

On using property

`int_0^a f(x)dx = int_0^a f(a - x)dx`

∴ I = `int_0^π (π - x)/(1 + sin(π - x))dx`

I = `int_0^π (π - x)/(1 + sinx)dx`  ...(ii)

Adding equations (i) and (ii), we get

2I = `int_0^π π/(1 + sinx)dx`

= `πint_0^π 1/(1 + sinx) xx (1 - sinx)/(1 - sinx)dx`  ...[Multiplying and dividing by (1 – sin x)]

= `πint_0^π (1 - sinx)/(1 - sin^2x)dx = πint_0^π (1 - sinx)/(cos^2x)dx`

= `π[int_0^π 1/(cos^2x)dx - int_0^π sinx/(cos^2x)dx]`

= `π[int_0^π sec^2x  dx - int_0^π secx tanx  dx]`

= `π[[tanx]_0^π - [secx]_0^π]`

= π[0 – (– 1 – 1)]

= 2π

∴ I = `(2π)/2` = π.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Delhi Set 2

संबंधित प्रश्न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


`int_0^1 "e"^(2x) "d"x` = ______


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×