Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^π x/(1 + sinx)dx`.
उत्तर
`int_0^π x/(1 + sinx)dx`
Let I = `int_0^π x/(1 + sinx)dx` ...(i)
On using property
`int_0^a f(x)dx = int_0^a f(a - x)dx`
∴ I = `int_0^π (π - x)/(1 + sin(π - x))dx`
I = `int_0^π (π - x)/(1 + sinx)dx` ...(ii)
Adding equations (i) and (ii), we get
2I = `int_0^π π/(1 + sinx)dx`
= `πint_0^π 1/(1 + sinx) xx (1 - sinx)/(1 - sinx)dx` ...[Multiplying and dividing by (1 – sin x)]
= `πint_0^π (1 - sinx)/(1 - sin^2x)dx = πint_0^π (1 - sinx)/(cos^2x)dx`
= `π[int_0^π 1/(cos^2x)dx - int_0^π sinx/(cos^2x)dx]`
= `π[int_0^π sec^2x dx - int_0^π secx tanx dx]`
= `π[[tanx]_0^π - [secx]_0^π]`
= π[0 – (– 1 – 1)]
= 2π
∴ I = `(2π)/2` = π.
APPEARS IN
संबंधित प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate : `intlogx/(1+logx)^2dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
`int_0^1 "e"^(2x) "d"x` = ______
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`