हिंदी

Find the distance between the lines: λr→=(i^+2j^-4k^)+λ(2i^+3j^+6k^); μr→=(3i^+3j^-5k^)+μ(4i^+6j^+12k^) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the distance between the lines:

`vecr = (hati + 2hatj - 4hatk) + λ(2hati + 3hatj + 6hatk)`;

`vecr = (3hati + 3hatj - 5hatk) + μ(4hati + 6hatj + 12hatk)`

योग

उत्तर

Lines are parallel

`a_1/a_2 = b_1/b_2 = c_1/c_2`

`2/4 = 3/6 = 6/12`

`1/2 = 1/2 = 1/2`

`vecb = 2hati + 3hatj + 6hatk`

`|vecb| = sqrt(4 + 9 + 36)`

= `sqrt(49)`

= 7

S.D. = `|(vecb xx (veca_2 - veca_1))/|vecb||`

`veca_1 = hati + 2hatj - 4hatk`

`veca_2 = 3hati + 3hatj - 5hatk`

`veca_2 - veca_1 = 2hati + hatj - hatk`

`vecb xx (veca_2 - veca_1) = |(hati, hatj, hatk),(2, 3, 6),(2, 1, -1)|`

= `-9hati + 14hatj - 4hatk`

`|vecb xx (veca_2 - veca_1)| = sqrt(81 + 196 + 16)`

= `sqrt(293)`

S.D. = `sqrt(293)/7` units.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Delhi Set 1

संबंधित प्रश्न

Find the distance between the planes 2x - y +  2z = 5 and 5x - 2.5y + 5z = 20


Find the shortest distance between the lines: 

`vecr = (hati+2hatj+hatk) + lambda(hati-hatj+hatk)` and `vecr = 2hati - hatj - hatk + mu(2hati + hatj + 2hatk)`


Find the shortest distance between lines `vecr = 6hati + 2hatj + 2hatk + lambda(hati - 2hatj + 2hatk)` and `vecr =-4hati - hatk + mu(3hati - 2hatj - 2hatk)`.


Find the shortest distance between the lines `(x+1)/7=(y+1)/(-6)=(z+1)/1 and (x-3)/1=(y-5)/(-2)=(z-7)/1`


Find the shortest distance between the lines `vecr = (4hati - hatj) + lambda(hati+2hatj-3hatk)` and `vecr = (hati - hatj + 2hatk) + mu(2hati + 4hatj - 5hatk)`


Find the shortest distance between the lines

\[\frac{x - 2}{- 1} = \frac{y - 5}{2} = \frac{z - 0}{3} \text{ and }  \frac{x - 0}{2} = \frac{y + 1}{- 1} = \frac{z - 1}{2} .\]
 

Find the shortest distance between the lines

\[\frac{x - 1}{2} = \frac{y - 3}{4} = \frac{z + 2}{1}\] and
\[3x - y - 2z + 4 = 0 = 2x + y + z + 1\]
 

Find the shortest distance between the lines given by `vec"r" = (8 + 3lambdahat"i" - (9 + 16lambda)hat"j" + (10 + 7lambda)hat"k"` and `vec"r" = 15hat"i" + 29hat"j" + 5hat"k" + mu(3hat"i" + 8hat"j" - 5hat"k")`


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The most economical speed to run the train is:


Find the shortest distance between the following lines:

`vecr = (hati + hatj - hatk) + s(2hati + hatj + hatk)`

`vecr = (hati + hatj - 2hatk) + t(4hati + 2hatj + 2hatk)`


Find the equation of line which passes through the point (1, 2, 3) and is parallel to the vector `3hati + 2hatj - 2hatk`


Find the angle between the following pair of lines:- `(x - 2)/ = (y - 1)/5 = (z + 3)/(-3)` and `(x + 2)/(-1) = (y - 4)/8 = (z - 5)/4`


What will be the shortest distance between the lines, `vecr = (hati + 2hatj + hatk) + lambda(hati - hatj + hatk)` and `vecr = (2hati - hatj - hatk) + mu(2hati + hatj + 2hatk)`


Determine the distance from the origin to the plane in the following case x + y + z = 1


Find the shortest distance between the lines, `vecr = 6hati + 2hatj + 2hatk + lambda(hati - 2hatj + 2hatk)` and `vecr = - 4hati - hatk + mu(3hati - 2hatj - 2hatk)`


If the shortest distance between the lines `vecr_1 = αhati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)`, λ∈R, α > 0 `vecr_2 = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`, μ∈R is 9, then α is equal to ______.


The shortest distance between the line y = x and the curve y2 = x – 2 is ______.


The largest value of a, for which the perpendicular distance of the plane containing the lines `vec"r" = (hat"i" + hat"j") + λ(hat"i" + "a"hat"j" - hat"k")` and `vec"r" = (hat"i" + hat"j") + μ(-hat"i" + hat"j" - "a"hat"k")` from the point (2, 1, 4) is `sqrt(3)`, is ______.


The shortest distance between the z-axis and the line x + y + 2z – 3 = 0 = 2x + 3y + 4z – 4, is ______.


The lines `vecr = hati + hatj - hatk + λ(2hati + 3hatj - 6hatk)` and `vecr = 2hati - hatj - hatk + μ(6hati + 9hatj - 18hatk)`; (where λ and μ are scalars) are ______.


An aeroplane is flying along the line `vecr = λ(hati - hatj + hatk)`; where 'λ' is a scalar and another aeroplane is flying along the line `vecr = hati - hatj + μ(-2hatj + hatk)`; where 'μ' is a scalar. At what points on the lines should they reach, so that the distance between them is the shortest? Find the shortest possible distance between them.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×