हिंदी

Find the Shortest Distance Between the Lines X − 2 − 1 = Y − 5 2 = Z − 0 3 and X − 0 2 = Y + 1 − 1 = Z − 1 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the shortest distance between the lines

\[\frac{x - 2}{- 1} = \frac{y - 5}{2} = \frac{z - 0}{3} \text{ and }  \frac{x - 0}{2} = \frac{y + 1}{- 1} = \frac{z - 1}{2} .\]
 
योग

उत्तर

\[\text{ The given equations of the lines are } \]
\[\frac{x - 2}{- 1} = \frac{y - 5}{2} = \frac{z - 0}{3} . . . \left( 1 \right)\]
\[\frac{x - 0}{2} = \frac{y + 1}{- 1} = \frac{z - 1}{2} . . . \left( 2 \right)\]
\[\text{ Clearly (2) passes through the pointP(0, -1, 1).} \]
\[\text{ Let the direction ratios of the plane be proportional to a, b, c . } \]
\[\text{ Since the plane containing line (1) should pass through (2, 5, 0) and is parallel to the line (1) } ,\]
\[\text{ equation of the plane passing through (1) is } \]
\[a \left( x - 2 \right) + b \left( y - 5 \right) + c \left( z - 0 \right) = 0 . . . \left( 3 \right), \]
\[\text{ where}  -a + 2b + 3c = 0 . . . \left( 4 \right)\]
\[\text{ Since the plane is parallel to line (2), } \]
\[2a - b + 2c = 0 . . . \left( 5 \right)\]
\[\text{ Solving (4) and (5) using cross-multiplication, we get } \]
\[\frac{a}{7} = \frac{b}{8} = \frac{c}{- 3}\]
\[\text{ Substitutinga, b and c in (3), we get} \]
\[7 \left( x - 2 \right) + 8 \left( y - 5 \right) - 3 \left( z - 0 \right) = 0\]
\[ \Rightarrow 7x + 8y - 3z - 54 = 0 . . . \left( 6 \right), \]
\[\text{ which is the equation of the plane containing line (1) and parallel to line (2).} \]
\[\text{ Shortest distance between (1) and (2) } \]
\[ = \text{  Distance between the point P(0, -1, 1) and plane (6) } \]
\[ = \left| \frac{7 \left( 0 \right) + 8 \left( - 1 \right) - 3 \left( 1 \right) - 54}{\sqrt{49 + 64 + 9}} \right|\]
\[ = \frac{65}{\sqrt{122}} \text{ units } \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.14 [पृष्ठ ७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.14 | Q 1 | पृष्ठ ७७

संबंधित प्रश्न

If the lines

`(x-1)/-3=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-5)/1=(z-6)/-5`

are at right angle then find the value of k

 

Show that the following two lines are coplanar:

`(x−a+d)/(α−δ)= (y−a)/α=(z−a−d)/(α+δ) and (x−b+c)/(β−γ)=(y−b)/β=(z−b−c)/(β+γ)`


 

Show that lines: 

`vecr=hati+hatj+hatk+lambda(hati-hat+hatk)`

`vecr=4hatj+2hatk+mu(2hati-hatj+3hatk)` are coplanar 

Also, find the equation of the plane containing these lines.

 

Find the distance between the planes 2x - y +  2z = 5 and 5x - 2.5y + 5z = 20


Find the shortest distance between the lines.

`(x + 1)/7 = (y + 1)/(- 6) = (z + 1)/1` and `(x - 3)/1 = (y - 5)/(- 2) = (z - 7)/1`.


Find the shortest distance between the lines whose vector equations are `vecr = (hati + 2hatj + 3hatk) + lambda(hati - 3hatj + 2hatk)` and `vecr = 4hati + 5hatj + 6hatk + mu(2hati + 3hatj + hatk)`.


Find the shortest distance between the lines whose vector equations are `vecr = (1-t)hati + (t - 2)hatj + (3 -2t)hatk` and `vecr = (s+1)hati + (2s + 1)hatk`.


Find the shortest distance between lines `vecr = 6hati + 2hatj + 2hatk + lambda(hati - 2hatj + 2hatk)` and `vecr =-4hati - hatk + mu(3hati - 2hatj - 2hatk)`.


Find the shortest distance between the lines `vec r = hat i + 2hat j + 3 hat k +  lambda(2 hat i +  3hatj +  4hatk)` and `vec r =  2hat i +  4 hat j + 5 hat k +  mu (4hat i + 6 hat j +  8 hat k)`


Find the shortest distance between the lines 

\[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and } \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} .\]
 

Find the shortest distance between the lines given by `vec"r" = (8 + 3lambdahat"i" - (9 + 16lambda)hat"j" + (10 + 7lambda)hat"k"` and `vec"r" = 15hat"i" + 29hat"j" + 5hat"k" + mu(3hat"i" + 8hat"j" - 5hat"k")`


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

If the train has travelled a distance of 500 km, then the total cost of running the train is given by the function:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The most economical speed to run the train is:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The fuel cost for the train to travel 500 km at the most economical speed is:


Find the shortest distance between the following lines:

`vecr = (hati + hatj - hatk) + s(2hati + hatj + hatk)`

`vecr = (hati + hatj - 2hatk) + t(4hati + 2hatj + 2hatk)`


Find the equation of line which passes through the point (1, 2, 3) and is parallel to the vector `3hati + 2hatj - 2hatk`


Find the angle between the following pair of lines:- `(x - 2)/ = (y - 1)/5 = (z + 3)/(-3)` and `(x + 2)/(-1) = (y - 4)/8 = (z - 5)/4`


What will be the shortest distance between the lines, `vecr = (hati + 2hatj + hatk) + lambda(hati - hatj + hatk)` and `vecr = (2hati - hatj - hatk) + mu(2hati + hatj + 2hatk)`


Determine the distance from the origin to the plane in the following case x + y + z = 1


Find the shortest distance between the following lines:

`vecr = 3hati + 5hatj + 7hatk + λ(hati - 2hatj + hatk)` and `vecr = (-hati - hatj - hatk) + μ(7hati - 6hatj + hatk)`.


If the shortest distance between the lines `vecr_1 = αhati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)`, λ∈R, α > 0 `vecr_2 = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`, μ∈R is 9, then α is equal to ______.


The shortest distance between the line y = x and the curve y2 = x – 2 is ______.


The largest value of a, for which the perpendicular distance of the plane containing the lines `vec"r" = (hat"i" + hat"j") + λ(hat"i" + "a"hat"j" - hat"k")` and `vec"r" = (hat"i" + hat"j") + μ(-hat"i" + hat"j" - "a"hat"k")` from the point (2, 1, 4) is `sqrt(3)`, is ______.


If the shortest distance between the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/λ` and `(x - 2)/1 = (y - 4)/4 = (z - 5)/5` is `1/sqrt(3)`, then the sum of all possible values of λ is ______.


The shortest distance between the z-axis and the line x + y + 2z – 3 = 0 = 2x + 3y + 4z – 4, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×