हिंदी

Find the Shortest Distance Between the Lines `Vec R = Hat I + 2hat J + 3 Hat K + Lambda(2 Hat I + 3hatj + 4hatk)` and `Vec R = 2hat I + 4 Hat J + 5 Hat K + Mu (4hat I + 6 Hat J + 8 Hat K)` - Mathematics

Advertisements
Advertisements

प्रश्न

Find the shortest distance between the lines `vec r = hat i + 2hat j + 3 hat k +  lambda(2 hat i +  3hatj +  4hatk)` and `vec r =  2hat i +  4 hat j + 5 hat k +  mu (4hat i + 6 hat j +  8 hat k)`

उत्तर

The given lines are 

`vec r = (hat i +  2 hat j + 3 hatk ) + lambda(2 hati +  3 hat j +  4 hat k)`

and 

`vec r = (2 hat i + 4 hat j +  5 hatk) +  2 mu(2 hati +  3 hatj +  4 hat k)`

or 

`vec r = (2 hat i + 4 hat j + 5 hat k) + mu^'(2 hat i +  3 hat j + 4 hat k)`

replacing `2mu` by  asingle parameter `mu'`

These two lines pass through the point A and B having position vectors `vec (a_1) = hat i +  2 hat j + 3 hat k` and `vec(a_2) = 2hati + 4 hatj +5 hat k`

`S.D. = |(vec(a_2) - vec(a_1))xx vec b|/|vec b|`

Here `(vec (a_2) - vec (a_1)) = (2hati + 4 hatj + 5 hatk) - (hat i + 2hatj + 3hatk) = hati + 2hatj + 2 hatk`

`:. (vec(a_2) - vec(a_1)) xx vecb = (hat i +  2hat j +  2 hatk) xx (2 hat i + 3 hatj + 4 hatk)`

`= |(hati, hatj, hatk),(1,2,2),(2,3,4)| = (8 - 6)hat i - (4 - 4) hatj + (3 - 4)hat k = 2hat i - 0hatj - hatk`

`:. |(vec(a_2) - vec(a_1))xx vecb| = sqrt((2)^2 + 0^2 + (-1)^2) = sqrt5` and `|vec b| = sqrt(4 + 9 + 16) = sqrt29`

Substituting these values in the formula for S.D. we have S.D. = `sqrt5/sqrt29 = sqrt(5/29)` units

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

 

Show that lines: 

`vecr=hati+hatj+hatk+lambda(hati-hat+hatk)`

`vecr=4hatj+2hatk+mu(2hati-hatj+3hatk)` are coplanar 

Also, find the equation of the plane containing these lines.

 

Find the shortest distance between the lines: 

`vecr = (hati+2hatj+hatk) + lambda(hati-hatj+hatk)` and `vecr = 2hati - hatj - hatk + mu(2hati + hatj + 2hatk)`


Find the shortest distance between the lines whose vector equations are `vecr = (1-t)hati + (t - 2)hatj + (3 -2t)hatk` and `vecr = (s+1)hati + (2s + 1)hatk`.


Find the shortest distance between lines `vecr = 6hati + 2hatj + 2hatk + lambda(hati - 2hatj + 2hatk)` and `vecr =-4hati - hatk + mu(3hati - 2hatj - 2hatk)`.


Find the shortest distance between the lines `vecr = (4hati - hatj) + lambda(hati+2hatj-3hatk)` and `vecr = (hati - hatj + 2hatk) + mu(2hati + 4hatj - 5hatk)`


Find the shortest distance between the lines 

\[\frac{x + 1}{7} = \frac{y + 1}{- 6} = \frac{z + 1}{1} \text{ and } \frac{x - 3}{1} = \frac{y - 5}{- 2} = \frac{z - 7}{1} .\]
 

Find the shortest distance between the lines given by `vec"r" = (8 + 3lambdahat"i" - (9 + 16lambda)hat"j" + (10 + 7lambda)hat"k"` and `vec"r" = 15hat"i" + 29hat"j" + 5hat"k" + mu(3hat"i" + 8hat"j" - 5hat"k")`


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The most economical speed to run the train is:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The fuel cost for the train to travel 500 km at the most economical speed is:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The total cost of the train to travel 500 km at the most economical speed is:


Find the equation of line which passes through the point (1, 2, 3) and is parallel to the vector `3hati + 2hatj - 2hatk`


Find the angle between the following pair of lines:- `(x - 2)/ = (y - 1)/5 = (z + 3)/(-3)` and `(x + 2)/(-1) = (y - 4)/8 = (z - 5)/4`


What will be the shortest distance between the lines, `vecr = (hati + 2hatj + hatk) + lambda(hati - hatj + hatk)` and `vecr = (2hati - hatj - hatk) + mu(2hati + hatj + 2hatk)`


Determine the distance from the origin to the plane in the following case x + y + z = 1


The planes `2x - y + 4z` = 5 and `5x - 2.5y + 10z` = 6


Find the shortest distance between the lines, `vecr = 6hati + 2hatj + 2hatk + lambda(hati - 2hatj + 2hatk)` and `vecr = - 4hati - hatk + mu(3hati - 2hatj - 2hatk)`


An insect is crawling along the line `barr = 6hati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)` and another insect is crawling along the line `barr = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`. At what points on the lines should they reach so that the distance between them s the shortest? Find the shortest possible distance between them.


Read the following passage and answer the questions given below.

Two motorcycles A and B are running at the speed more than the allowed speed on the roads represented by the lines `vecr = λ(hati + 2hatj - hatk)` and `vecr = (3hati + 3hatj) + μ(2hati + hatj + hatk)` respectively.

Based on the above information, answer the following questions:

  1. Find the shortest distance between the given lines.
  2. Find the point at which the motorcycles may collide.

If the shortest distance between the lines `vecr_1 = αhati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)`, λ∈R, α > 0 `vecr_2 = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`, μ∈R is 9, then α is equal to ______.


The largest value of a, for which the perpendicular distance of the plane containing the lines `vec"r" = (hat"i" + hat"j") + λ(hat"i" + "a"hat"j" - hat"k")` and `vec"r" = (hat"i" + hat"j") + μ(-hat"i" + hat"j" - "a"hat"k")` from the point (2, 1, 4) is `sqrt(3)`, is ______.


If the shortest distance between the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/λ` and `(x - 2)/1 = (y - 4)/4 = (z - 5)/5` is `1/sqrt(3)`, then the sum of all possible values of λ is ______.


The shortest distance between the z-axis and the line x + y + 2z – 3 = 0 = 2x + 3y + 4z – 4, is ______.


Find the distance between the lines:

`vecr = (hati + 2hatj - 4hatk) + λ(2hati + 3hatj + 6hatk)`;

`vecr = (3hati + 3hatj - 5hatk) + μ(4hati + 6hatj + 12hatk)`


The lines `vecr = hati + hatj - hatk + λ(2hati + 3hatj - 6hatk)` and `vecr = 2hati - hatj - hatk + μ(6hati + 9hatj - 18hatk)`; (where λ and μ are scalars) are ______.


An aeroplane is flying along the line `vecr = λ(hati - hatj + hatk)`; where 'λ' is a scalar and another aeroplane is flying along the line `vecr = hati - hatj + μ(-2hatj + hatk)`; where 'μ' is a scalar. At what points on the lines should they reach, so that the distance between them is the shortest? Find the shortest possible distance between them.


Show that the line whose vector equation is `vecr = (2hati - 2hatj + 3hatk) + λ(hati - hatj + 4hatk)` is parallel to the plane whose vector equation is `vecr.(hati + 5hatj + hatk) = 5`. Also find the distance between them.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×