हिंदी

An insect is crawling along the line λr¯=6i^+2j^+2k^+λ(i^-2j^+2k^) and another insect is crawling along the line μr¯=-4i^-k^+μ(3i^-2j^-2k^). - Mathematics

Advertisements
Advertisements

प्रश्न

An insect is crawling along the line `barr = 6hati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)` and another insect is crawling along the line `barr = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`. At what points on the lines should they reach so that the distance between them s the shortest? Find the shortest possible distance between them.

योग

उत्तर

The given lines are non-parallel lines. There is a unique line segment PQ (P lying on one and Q on the other) at right angles to both lines. PQ is the shortest distance between the lines. Hence, the shortest possible distance between the insects = PQ

The position vector of P lying on the line

`barr = 6hati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)` is `(6 + λ)hati + (2 - 2λ)hatj + (2 + 2λ)hatk` for some λ

The position vector of Q lying on the line

`vecr = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)` is `(-4 + 3μ)hati + (-2μ)hatj + (-1 - 2μ)hatk` for some μ

`vec(PQ) = (- 10 + 3μ - λ)hati + (-2μ - 2 + 2λ)hatj + (-3 - 2μ - 2λ)hatk`

Since PQ is perpendicular to both lines

`(-10 + 3μ - λ) + (-2μ - 2 + 2λ)(-2) + (-3 - 2μ - 2λ)2` = 0,

i.e., μ – 3λ = 4  ...(i)

And (–10 + 3μ – λ)3 + (–2μ –2 + 2λ)(–2) + (–3 – 2μ – 2λ)(–2) = 0,

i.e., 17μ – 3λ = 20  ...(ii) 

Solving (i) and (ii) for λ and μ, we get = 1, 1 = –1.

The position vector of the points, at which they should be so that the distance between them is the shortest, is `5hati + 4hatj` and `-hati - 2hatj - 3hatk`

`vec(PQ) = - 6hati - 6hatj - 3hatk`

The shortest distance = `|vec(PQ)|`

= `sqrt(6^2 + 6^2 + 3^2)`

= 9

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Sample

संबंधित प्रश्न

If the lines

`(x-1)/-3=(y-2)/(2k)=(z-3)/2 and (x-1)/(3k)=(y-5)/1=(z-6)/-5`

are at right angle then find the value of k

 

Find the shortest distance between the lines.

`(x + 1)/7 = (y + 1)/(- 6) = (z + 1)/1` and `(x - 3)/1 = (y - 5)/(- 2) = (z - 7)/1`.


Find the shortest distance between the lines whose vector equations are `vecr = (hati + 2hatj + 3hatk) + lambda(hati - 3hatj + 2hatk)` and `vecr = 4hati + 5hatj + 6hatk + mu(2hati + 3hatj + hatk)`.


Find the shortest distance between the lines whose vector equations are `vecr = (1-t)hati + (t - 2)hatj + (3 -2t)hatk` and `vecr = (s+1)hati + (2s + 1)hatk`.


Find the shortest distance between the lines `vecr = (4hati - hatj) + lambda(hati+2hatj-3hatk)` and `vecr = (hati - hatj + 2hatk) + mu(2hati + 4hatj - 5hatk)`


Find the shortest distance between the lines `vec r = hat i + 2hat j + 3 hat k +  lambda(2 hat i +  3hatj +  4hatk)` and `vec r =  2hat i +  4 hat j + 5 hat k +  mu (4hat i + 6 hat j +  8 hat k)`


Find the shortest distance between the lines

\[\frac{x - 2}{- 1} = \frac{y - 5}{2} = \frac{z - 0}{3} \text{ and }  \frac{x - 0}{2} = \frac{y + 1}{- 1} = \frac{z - 1}{2} .\]
 

Find the shortest distance between the lines

\[\frac{x - 1}{2} = \frac{y - 3}{4} = \frac{z + 2}{1}\] and
\[3x - y - 2z + 4 = 0 = 2x + y + z + 1\]
 

The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

If the train has travelled a distance of 500 km, then the total cost of running the train is given by the function:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The fuel cost for the train to travel 500 km at the most economical speed is:


The fuel cost per hour for running a train is proportional to the square of the speed it generates in km per hour. If the fuel costs ₹ 48 per hour at a speed of 16 km per hour and the fixed charges to run the train amount to ₹ 1200 per hour. Assume the speed of the train as v km/h.

The total cost of the train to travel 500 km at the most economical speed is:


Find the shortest distance between the following lines:

`vecr = (hati + hatj - hatk) + s(2hati + hatj + hatk)`

`vecr = (hati + hatj - 2hatk) + t(4hati + 2hatj + 2hatk)`


What will be the shortest distance between the lines, `vecr = (hati + 2hatj + hatk) + lambda(hati - hatj + hatk)` and `vecr = (2hati - hatj - hatk) + mu(2hati + hatj + 2hatk)`


Determine the distance from the origin to the plane in the following case x + y + z = 1


Distance between the planes :- 

`2x + 3y + 4z = 4` and `4x + 6y + 8z = 12` is


The planes `2x - y + 4z` = 5 and `5x - 2.5y + 10z` = 6


Find the shortest distance between the lines, `vecr = 6hati + 2hatj + 2hatk + lambda(hati - 2hatj + 2hatk)` and `vecr = - 4hati - hatk + mu(3hati - 2hatj - 2hatk)`


Read the following passage and answer the questions given below.

Two motorcycles A and B are running at the speed more than the allowed speed on the roads represented by the lines `vecr = λ(hati + 2hatj - hatk)` and `vecr = (3hati + 3hatj) + μ(2hati + hatj + hatk)` respectively.

Based on the above information, answer the following questions:

  1. Find the shortest distance between the given lines.
  2. Find the point at which the motorcycles may collide.

If the shortest distance between the lines `vecr_1 = αhati + 2hatj + 2hatk + λ(hati - 2hatj + 2hatk)`, λ∈R, α > 0 `vecr_2 = - 4hati - hatk + μ(3hati - 2hatj - 2hatk)`, μ∈R is 9, then α is equal to ______.


If the shortest distance between the lines `(x - 1)/2 = (y - 2)/3 = (z - 3)/λ` and `(x - 2)/1 = (y - 4)/4 = (z - 5)/5` is `1/sqrt(3)`, then the sum of all possible values of λ is ______.


The shortest distance between the z-axis and the line x + y + 2z – 3 = 0 = 2x + 3y + 4z – 4, is ______.


Find the distance between the lines:

`vecr = (hati + 2hatj - 4hatk) + λ(2hati + 3hatj + 6hatk)`;

`vecr = (3hati + 3hatj - 5hatk) + μ(4hati + 6hatj + 12hatk)`


The lines `vecr = hati + hatj - hatk + λ(2hati + 3hatj - 6hatk)` and `vecr = 2hati - hatj - hatk + μ(6hati + 9hatj - 18hatk)`; (where λ and μ are scalars) are ______.


Show that the line whose vector equation is `vecr = (2hati - 2hatj + 3hatk) + λ(hati - hatj + 4hatk)` is parallel to the plane whose vector equation is `vecr.(hati + 5hatj + hatk) = 5`. Also find the distance between them.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×